Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 326(Pt A): 116834, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36436438

RESUMO

The process of site selection and spatial planning has received scarce attention in the scientific literature dealing with marine restoration, suggesting the need to better address how spatial planning tools could guide restoration interventions. In this study, for the first time, the consequences of adopting different restoration targets and criteria on spatial restoration prioritization have been assessed at a regional scale, including the consideration of climate changes. We applied the decision-support tool Marxan, widely used in systematic conservation planning on Mediterranean macroalgal forests. The loss of this habitat has been largely documented, with limited evidences of natural recovery. Spatial priorities were identified under six planning scenarios, considering three main restoration targets to reflect the objectives of the EU Biodiversity Strategy for 2030. Results show that the number of suitable sites for restoration is very limited at basin scale, and targets are only achieved when the recovery of 10% of regressing and extinct macroalgal forests is planned. Increasing targets translates into including unsuitable areas for restoration in Marxan solutions, amplifying the risk of ineffective interventions. Our analysis supports macroalgal forests restoration and provides guiding principles and criteria to strengthen the effectiveness of restoration actions across habitats. The constraints in finding suitable areas for restoration are discussed, and recommendations to guide planning to support future restoration interventions are also included.


Assuntos
Mudança Climática , Florestas , Biodiversidade
2.
Sci Rep ; 12(1): 18103, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302874

RESUMO

Marine forests are shrinking globally due to several anthropogenic impacts including climate change. Forest-forming macroalgae, such as Cystoseira s.l. species, can be particularly sensitive to environmental conditions (e.g. temperature increase, pollution or sedimentation), especially during early life stages. However, not much is known about their response to the interactive effects of ocean warming (OW) and acidification (OA). These drivers can also affect the performance and survival of crustose coralline algae, which are associated understory species likely playing a role in the recruitment of later successional species such as forest-forming macroalgae. We tested the interactive effects of elevated temperature, low pH and species facilitation on the recruitment of Cystoseira compressa. We demonstrate that the interactive effects of OW and OA negatively affect the recruitment of C. compressa and its associated coralline algae Neogoniolithon brassica-florida. The density of recruits was lower under the combinations OW and OA, while the size was negatively affected by the temperature increase but positively affected by the low pH. The results from this study show that the interactive effects of climate change and the presence of crustose coralline algae can have a negative impact on the recruitment of Cystoseira s.l. species. While new restoration techniques recently opened the door to marine forest restoration, our results show that the interactions of multiple drivers and species interactions have to be considered to achieve long-term population sustainability.


Assuntos
Rodófitas , Alga Marinha , Mudança Climática , Alga Marinha/fisiologia , Florestas , Concentração de Íons de Hidrogênio , Água do Mar
3.
Animals (Basel) ; 12(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35405816

RESUMO

Prey fish cohabit with specialized predator fish within structurally complex habitats. How the vertical stratification of the habitat affects lethal and behavioral predator-prey interactions and contributes to explaining these patterns has never been investigated within a forest-like marine habitat, i.e., a habitat containing three vertical strata (understory, canopy, open-water above). We studied this in tank experiments, with a model prey (the wrasse Symphodus ocellatus) and two model predators (the stalk-and-attack comber Serranus cabrilla and the sit-and-wait scorpionfish Scorpaena porcus), which are among the most abundant prey and predators cohabiting in Mediterranean Cystoseira forests. Wrasse anti-predator behavior was predator-specific. When exposed to the scorpionfish, the wrasse increased its vertical distance from the predator, regardless of the habitat structure. Conversely, when exposed to the comber, the wrasse sought refuge within forest structures: (1) the canopy provides more hiding opportunities due to its high complexity, and (2) the understory provides more escape/avoidance opportunities due to (a) its low complexity that allows for fast prey movements, and (b) the presence of the canopy above that limits the comber's access to the understory. Our results suggest that habitat vertical stratification mediates predator-prey interactions and potentially promotes the co-existence of prey and multiple predators within marine forests.

4.
Environ Sci Technol ; 56(6): 3462-3470, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35235315

RESUMO

Since the first human release of radionuclides on Earth at the end of the Second World War, impact assessments have been implemented. Radionuclides are now ubiquitous, and the impact of local accidental release on human activities, although of low probability, is of tremendous social and economic consequences. Although radionuclide inventories (at various scales) are essential as input data for impact assessment, crucial information on physicochemical speciation is lacking. Among the metallic radionuclides of interest, cobalt-60 is one of the most important activation products generated in the nuclear industry. In this work, a marine model ecosystem has been defined because seawater and more generally marine ecosystems are final receptacles of metal pollution. A multistep approach from quantitative uptake to understanding of the accumulation mechanism has been implemented with the sea urchin Paracentrotus lividus. In a well-controlled aquarium, the day-by-day uptake of cobalt and its quantification in different compartments of the sea urchin were monitored with various conditions of exposure by combining ICP-OES analysis and γ spectrometry. Cobalt is mainly distributed following the rating intestinal tract ≫ gonads > shell spines. Cobalt speciation in seawater and inside the gonads and the intestinal tract was determined using extended X-ray absorption fine structure (EXAFS). The cobalt inside the gonads and the intestinal tract is mainly complexed by the toposome, the main protein in the sea urchin P. lividus. Complexation with purified toposome was characterized and a complexation site combining EXAFS and AIMD (ab initio molecular dynamics) was proposed implying monodentate carboxylates.


Assuntos
Paracentrotus , Animais , Cobalto , Ecossistema , Gônadas , Humanos , Paracentrotus/química , Água do Mar
5.
Harmful Algae ; 113: 102199, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35287932

RESUMO

In recent decades, recurrent Ostreopsis spp. blooms have been recorded throughout the globe, causing public health issues and mass mortalities of invertebrates. Ostreopsis species are benthic and develop in shallow waters in close relation with a substrate, but possible substrate preferences are still ambiguous. Bloom develops on both living and dead substrates and several interacting biotic and abiotic factors acting at different spatial scales can potentially foster or regulate Ostreopsis spp. development. The objective of this review is to collect and summarize information on Ostreopsis spp. blooms related to the habitat at different spatial scales, in order to assess preferences and trends. References including Ostreopsis spp. samplings in the field were analysed in this review, as potentially including information about the micro- (substrate), meso­ (community) and macrohabitat (ecosystem) related to Ostreopsis spp. blooms. The sampled substrate and the ecosystem where Ostreopsis spp. were collected were generally reported and described in the studies, while the description of the mesohabitat was rarely reported. Ostreopsis spp. were generally described as attached to biotic substrates and in particular, macroalgae, even in studies conducted in coral reefs, where macroalgae are generally not dominant (but they can be in case of coral reef degradation). In both temperate and tropical areas, Ostreopsis spp. were mostly sampled on algal species usually forming medium or low complexity communities (erect or turf-forming algae), often characteristic from post-regime shift scenarios, and rarely on canopy-forming species (such as fucoids and kelps). This literature review highlights the need of collecting more information about the mesohabitat where important Ostreopsis spp. blooms develop, as much as of the underlying mechanisms driving eventual differences on Ostreopsis spp. abundances. This knowledge would allow a better risk assessment of Ostreopsis spp. blooms, identifying areas at high risk on the base of the benthic habitats.


Assuntos
Dinoflagellida , Alga Marinha , Recifes de Corais , Dinoflagellida/fisiologia , Ecossistema
6.
Sci Rep ; 11(1): 16792, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34408197

RESUMO

Cystoseira sensu lato (Class Phaeophyceae, Order Fucales, Family Sargassaceae) forests play a central role in marine Mediterranean ecosystems. Over the last decades, Cystoseira s.l. suffered from a severe loss as a result of multiple anthropogenic stressors. In particular, Gongolaria barbata has faced multiple human-induced threats, and, despite its ecological importance in structuring rocky communities and hosting a large number of species, the natural recovery of G. barbata depleted populations is uncertain. Here, we used nine microsatellite loci specifically developed for G. barbata to assess the genetic diversity of this species and its genetic connectivity among fifteen sites located in the Ionian, the Adriatic and the Black Seas. In line with strong and significant heterozygosity deficiencies across loci, likely explained by Wahlund effect, high genetic structure was observed among the three seas (ENA corrected FST = 0.355, IC = [0.283, 0.440]), with an estimated dispersal distance per generation smaller than 600 m, both in the Adriatic and Black Sea. This strong genetic structure likely results from restricted gene flow driven by geographic distances and limited dispersal abilities, along with genetic drift within isolated populations. The presence of genetically disconnected populations at small spatial scales (< 10 km) has important implications for the identification of relevant conservation and management measures for G. barbata: each population should be considered as separated evolutionary units with dedicated conservation efforts.


Assuntos
Variação Genética/genética , Genética Populacional , Phaeophyceae/genética , Alga Marinha/genética , Mar Negro , Conservação dos Recursos Naturais , Ecossistema , Deriva Genética , Humanos , Repetições de Microssatélites , Phaeophyceae/crescimento & desenvolvimento , Alga Marinha/crescimento & desenvolvimento
7.
Environ Sci Technol ; 53(14): 7974-7983, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31187628

RESUMO

Uranium speciation and bioaccumulation were investigated in the sea urchin Paracentrotus lividus. Through accumulation experiments in a well-controlled aquarium followed by ICP-OES analysis, the quantification of uranium in the different compartments of the sea urchin was performed. Uranium is mainly distributed in the test (skeletal components), as it is the major constituent of the sea urchin, but in terms of quantity of uranium per gram of compartment, the following rating: intestinal tract > gonads ≫ test, was obtained. Combining both extended X-ray Absorption Spectroscopy and time-resolved laser-induced fluorescence spectroscopic analysis, it was possible to identify two different forms of uranium in the sea urchin, one in the test, as a carbonato-calcium complex, and the second one in the gonads and intestinal tract, as a protein complex. Toposome is a major calcium-binding transferrin-like protein contained within the sea urchin. EXAFS data fitting of both contaminated organs in vivo and the uranium-toposome complex from protein purified out of the gonads revealed that it is suspected to complex uranium in gonads and intestinal tract. This hypothesis is also supported by the results from two imaging techniques, i.e., Transmission Electron Microscopy and Scanning Transmission X-ray Microscopy. This thorough investigation of uranium uptake in sea urchin is one of the few attempts to assess the speciation in a living marine organism in vivo.


Assuntos
Paracentrotus , Urânio , Animais , Gônadas
8.
Mar Environ Res ; 144: 56-61, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30591257

RESUMO

Sea urchins, ecologically important herbivores of shallow subtidal temperate reefs, are considered particularly threatened in a future ocean acidification scenario, since their carbonate structures (skeleton and grazing apparatus) are made up of the very soluble high-magnesium calcite, particularly sensitive to a decrease in pH. The biomechanical properties of their skeletal structures are of great importance for their individual fitness, because the skeleton provides the means for locomotion, grazing and protection from predators. Sea urchin skeleton is composed of discrete calcite plates attached to each other at sutures by organic ligaments. The present study addressed the fate of the sea urchin Paracentrotus lividus (Lamarck, 1816) skeleton in acidified oceans, taking into account the combined effect of reduced pH and macroalgal diet, with potential cascading consequences at the ecosystem level. A breaking test on individual plates of juvenile specimens fed different macroalgal diets has been performed, teasing apart plate strength and stiffness from general robustness. Results showed no direct short-term effect of a decrease in seawater pH nor of the macroalgal diet on single plate mechanical properties. Nevertheless, results from apical plates, the ones presumably formed during the experimental period, provided an indication of a possible diet-mediated response, with sea urchins fed the more calcified macroalga sustaining higher forces before breakage than the one fed the non-calcified algae. This, on the long term, may produce bottom-up effects on sea urchins, leading to potential shifts in the ecosystem equilibrium under an ocean acidified scenario.


Assuntos
Estruturas Animais/anatomia & histologia , Paracentrotus/anatomia & histologia , Água do Mar/química , Animais , Fenômenos Biomecânicos , Dieta/veterinária , Ecossistema , Concentração de Íons de Hidrogênio , Oceanos e Mares , Alga Marinha
9.
Mar Environ Res ; 138: 102-109, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29706367

RESUMO

Coastal areas have been transformed worldwide by urbanization, so that artificial structures are now widespread. Current coastal development locally depletes many native marine species, while offering limited possibilities for their expansion. Eco-engineering interventions intend to identify ways to facilitate the presence of focal species and their associated functions on artificial habitats. An important but overlooked factor controlling restoration operations is overgrazing by herbivores. The aim of this study was to quantify the effects of different potential feeders on Cystoseira amentacea, a native canopy-forming alga of the Mediterranean infralittoral fringe, and test whether manipulation of grazing pressure can facilitate the human-guided installation of this focal species on coastal structures. Results of laboratory tests and field experiments revealed that Sarpa salpa, the only strictly native herbivorous fish in the Western Mediterranean Sea, can be a very effective grazer of C. amentacea in artificial habitats, up to as far as the infralittoral fringe, which is generally considered less accessible to fishes. S. salpa can limit the success of forestation operations in artificial novel habitats, causing up to 90% of Cystoseira loss after a few days. Other grazers, such as limpets and crabs, had only a moderate impact. Future engineering operations,intended to perform forestation of canopy-forming algae on artificial structures, should consider relevant biotic factors, such as fish overgrazing, identifying cost-effective techniques to limit their impact, as is the usual practice in restoration programmes on land.


Assuntos
Ecossistema , Peixes/fisiologia , Herbivoria , Animais , Pesqueiros/estatística & dados numéricos , Cadeia Alimentar , Mar Mediterrâneo , Perciformes
10.
Sci Rep ; 7(1): 6012, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28729633

RESUMO

Canopy-forming algae are declining globally due to multiple disturbances. This decline has recently been on the increase due to the spread of some tropical herbivorous fishes. This new phenomenon has drawn attention to the effects of fish herbivory in temperate areas, which have been assumed to be negligible compared to that of invertebrates, such as sea urchins. In this study, the impact of a Mediterranean native herbivorous fish (Sarpa salpa, salema) was assessed on the canopy-forming seaweed Cystoseira amentacea var. stricta. Cystoseira amentacea forms belts in the infralittoral fringe of wave-exposed shores, which has so far been considered a refuge from fish herbivory. To test the effects of salema feeding on natural C. amentacea belts, an innovative herbivore deterrent device was conceived. Salema had a significant effect on C. amentacea by decreasing algal size, biomass and fertility, by up to 97%. The results suggest that the contribution of salema feeding to the loss of Cystoseira forests in the Mediterranean may have been overlooked. In addition, the analysis of temporal and spatial patterns of salema landings in the Mediterranean Sea suggests that salema abundance may have increased recently. Thus, along with invertebrate herbivory and anthropogenic stressors, fish herbivory may also represent a potential threat to algal forests in temperate areas.


Assuntos
Ecossistema , Peixes , Florestas , Herbivoria , Phaeophyceae , Animais , Biodiversidade , Biomassa , França , Mar Mediterrâneo
11.
Harmful Algae ; 64: 1-10, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28427567

RESUMO

Despite the potential negative human health, ecological and economic impact, the ecology of harmful benthic dinoflagellate blooms remains largely unknown. This is probably due to the complex interactions among biotic and abiotic drivers that influence blooms, but also to the difficulty in quantifying cell abundance in a comparable way over large spatial and temporal scales. One of the recognized priorities for bHABs (benthic Harmful Algal Blooms) assessment is developing and standardizing methods that can provide comparable data. In this context, the Benthic Dinoflagellates Integrator (BEDI), a new non-destructive quantification method for benthic dinoflagellate abundances, has been developed and tested within the present study. The rationale behind the BEDI standard assessment method is that mechanical resuspension of cells enables the quantification of abundances as cells per unit of seabed surface area (i.e. cellsmm-2) or as Potentially Resuspended cells per unit of volume (PRcellsml-1), by integrating both cells in the biofilm and those in the surrounding water. Estimations of Ostreopsis performed with BEDI method are independent of the substratum (i.e. macroalgal species) or the dominant ecosystem (i.e. algal forests or turfs, seagrass beds, coral reefs) and potentially allow the comparison of benthic dinoflagellate blooms over broad temporal and spatial scales. The first application of the BEDI method, presented in this study, gave encouraging results: the characterization of blooms of Ostreopsis cf. ovata at three sites in the NW Mediterranean Sea is consistent with results derived from the other commonly applied methods. Quantification of the ratio between abundances of cells in the biofilm and in the surrounding water was calculated for the first time per unit of seabed surface area, demonstrating that the highest abundances of cells (the stock), and therefore the associated risk for human health, are in the biofilm. For risk assessment purposes, conversion values for commonly used monitoring alert thresholds of Mediterranean Ostreopsis blooms are provided.


Assuntos
Biofilmes , Dinoflagellida/fisiologia , Monitoramento Ambiental/métodos , Proliferação Nociva de Algas/fisiologia , Biomassa , Dinoflagellida/isolamento & purificação , Monitoramento Ambiental/instrumentação , Itália , Mar Mediterrâneo
12.
PLoS One ; 11(10): e0164121, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27760168

RESUMO

In Mediterranean subtidal rocky reefs, Cystoseira spp. (Phaeophyceae) form dense canopies up to 1 m high. Such habitats, called 'Cystoseira forests', are regressing across the entire Mediterranean Sea due to multiple anthropogenic stressors, as are other large brown algae forests worldwide. Cystoseira forests are being replaced by structurally less complex habitats, but little information is available regarding the potential difference in the structure and composition of fish assemblages between these habitats. To fill this void, we compared necto-benthic (NB) and crypto-benthic (CB) fish assemblage structures between Cystoseira forests and two habitats usually replacing the forests (turf and barren), in two sampling regions (Corsica and Menorca). We sampled NB fish using Underwater Visual Census (UVC) and CB fish using Enclosed Anaesthetic Station Vacuuming (EASV), since UVC is known to underestimate the diversity and density of the 'hard to spot' CB fish. We found that both taxonomic diversity and total density of NB and CB fish were highest in Cystoseira forests and lowest in barrens, while turfs, that could be sampled only at Menorca, showed intermediate values. Conversely, total biomass of NB and CB fish did not differ between habitats because the larger average size of fish in barrens (and turfs) compensated for their lower densities. The NB families Labridae and Serranidae, and the CB families Blenniidae, Cliniidae, Gobiidae, Trypterigiidae and Scorpaenidae, were more abundant in forests. The NB taxa Diplodus spp. and Thalassoma pavo were more abundant in barrens. Our study highlights the importance of using EASV for sampling CB fish, and shows that Cystoseira forests support rich and diversified fish assemblages. This evidence suggests that the ongoing loss of Cystoseira forests may impair coastal fish assemblages and related goods and services to humans, and stresses the need to implement strategies for the successful conservation and/or recovery of marine forests.


Assuntos
Biodiversidade , Ecossistema , Peixes/classificação , Alga Marinha/crescimento & desenvolvimento , Animais , Análise Multivariada , Phaeophyceae/crescimento & desenvolvimento
13.
Mar Pollut Bull ; 107(1): 300-304, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27048690

RESUMO

In the framework of monitoring of benthic harmful algal blooms (BHABs), the most commonly reported sampling strategy is based on the collection of macrophytes. However, this methodology has some inherent problems. A potential alternative method uses artificial substrates that collect resuspended benthic cells. The current study defines main improvements in this technique, through the use of fiberglass screens during a bloom of Ostreopsis cf. ovata. A novel set-up for the deployment of artificial substrates in the field was tested, using an easy clip-in system that helped restrain substrates perpendicular to the water flow. An experiment was run in order to compare the cell collection efficiency of different mesh sizes of fiberglass screens and results suggested an optimal porosity of 1-3mm. The present study goes further on showing artificial substrates, such as fiberglass screens, as efficient tools for the monitoring and mitigation of BHABs.


Assuntos
Dinoflagellida , Monitoramento Ambiental/métodos , Proliferação Nociva de Algas
14.
Mar Environ Res ; 93: 78-84, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24050836

RESUMO

Continuous anthropogenic CO2 emissions to the atmosphere and uptake by the oceans will cause a reduction of seawater pH and saturation state (Ω) of CaCO3 minerals from which marine calcifiers build their shells and skeletons. Sea urchins use the most soluble form of calcium carbonate, high-magnesium calcite, to build their skeleton, spines and grazing apparatus. In order to highlight the effects of increased pCO2 on the test thickness and carbonate elemental composition of juvenile sea urchins and potential differences in their responses linked to the diet, we performed a laboratory experiment on juvenile Paracentrotus lividus, grazing on calcifying (Corallina elongata) and non-calcifying (Cystoseira amentacea, Dictyota dichotoma) macroalgae, under different pH (corresponding to pCO2 values of 390, 550, 750 and 1000 µatm). Results highlighted the importance of the diet in determining sea urchin size irrespectively of the pCO2 level, and the relevance of macroalgal diet in modulating urchin Mg/Ca ratio. The present study provides relevant clues both in terms of the mechanism of mineral incorporation and in terms of bottom-up processes (algal diet) affecting top-down ones (fish predation) in rocky subtidal communities.


Assuntos
Carbonatos/metabolismo , Dieta , Paracentrotus/metabolismo , Água do Mar/química , Animais , Cálcio/metabolismo , Concentração de Íons de Hidrogênio , Magnésio/metabolismo , Microscopia Eletrônica de Varredura , Paracentrotus/crescimento & desenvolvimento , Paracentrotus/ultraestrutura , Phaeophyceae , Rodófitas
15.
PLoS One ; 8(4): e61978, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23613994

RESUMO

Temperate marine rocky habitats may be alternatively characterized by well vegetated macroalgal assemblages or barren grounds, as a consequence of direct and indirect human impacts (e.g. overfishing) and grazing pressure by herbivorous organisms. In future scenarios of ocean acidification, calcifying organisms are expected to be less competitive: among these two key elements of the rocky subtidal food web, coralline algae and sea urchins. In order to highlight how the effects of increased pCO2 on individual calcifying species will be exacerbated by interactions with other trophic levels, we performed an experiment simultaneously testing ocean acidification effects on primary producers (calcifying and non-calcifying algae) and their grazers (sea urchins). Artificial communities, composed by juveniles of the sea urchin Paracentrotus lividus and calcifying (Corallina elongata) and non-calcifying (Cystoseira amentacea var stricta, Dictyota dichotoma) macroalgae, were subjected to pCO2 levels of 390, 550, 750 and 1000 µatm in the laboratory. Our study highlighted a direct pCO2 effect on coralline algae and on sea urchin defense from predation (test robustness). There was no direct effect on the non-calcifying macroalgae. More interestingly, we highlighted diet-mediated effects on test robustness and on the Aristotle's lantern size. In a future scenario of ocean acidification a decrease of sea urchins' density is expected, due to lower defense from predation, as a direct consequence of pH decrease, and to a reduced availability of calcifying macroalgae, important component of urchins' diet. The effects of ocean acidification may therefore be contrasting on well vegetated macroalgal assemblages and barren grounds: in the absence of other human impacts, a decrease of biodiversity can be predicted in vegetated macroalgal assemblages, whereas a lower density of sea urchin could help the recovery of shallow subtidal rocky areas affected by overfishing from barren grounds to assemblages dominated by fleshy macroalgae.


Assuntos
Ecossistema , Animais , Biodiversidade , Ouriços-do-Mar/fisiologia
16.
PLoS One ; 7(2): e32742, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22393445

RESUMO

Historical exploitation of the Mediterranean Sea and the absence of rigorous baselines makes it difficult to evaluate the current health of the marine ecosystems and the efficacy of conservation actions at the ecosystem level. Here we establish the first current baseline and gradient of ecosystem structure of nearshore rocky reefs at the Mediterranean scale. We conducted underwater surveys in 14 marine protected areas and 18 open access sites across the Mediterranean, and across a 31-fold range of fish biomass (from 3.8 to 118 g m(-2)). Our data showed remarkable variation in the structure of rocky reef ecosystems. Multivariate analysis showed three alternative community states: (1) large fish biomass and reefs dominated by non-canopy algae, (2) lower fish biomass but abundant native algal canopies and suspension feeders, and (3) low fish biomass and extensive barrens, with areas covered by turf algae. Our results suggest that the healthiest shallow rocky reef ecosystems in the Mediterranean have both large fish and algal biomass. Protection level and primary production were the only variables significantly correlated to community biomass structure. Fish biomass was significantly larger in well-enforced no-take marine reserves, but there were no significant differences between multi-use marine protected areas (which allow some fishing) and open access areas at the regional scale. The gradients reported here represent a trajectory of degradation that can be used to assess the health of any similar habitat in the Mediterranean, and to evaluate the efficacy of marine protected areas.


Assuntos
Biomassa , Ecossistema , Peixes/fisiologia , Algoritmos , Animais , Conservação dos Recursos Naturais , Recifes de Corais , Meio Ambiente , Geografia , Humanos , Invertebrados/fisiologia , Mar Mediterrâneo , Dinâmica Populacional
17.
Mar Environ Res ; 76: 97-107, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22000703

RESUMO

Harmful benthic microalgae blooms are an emerging phenomenon causing health and economic concern, especially in tourist areas. This is the case of the Mediterranean Sea, where Ostreopsis ovata blooms occur in summer, with increasing regularity. Ostreopsis species produce palytoxin (PTX) and analogues, and a number of deaths directly associated with the ingestion of PTX contaminated seafood have been reported. PTX is considered one of the most toxic molecules occurring in nature and can provoke severe and sometimes lethal intoxications in humans. So far in temperate areas, O. ovata blooms were reported to cause intoxications of humans by inhalation and irritations by contact. In addition, invertebrate mass mortalities have been reported, possibly linked to O. ovata blooms, although other causes cannot be ruled out, such as oxygen depletion or high seawater temperature. In order to improve our knowledge about the direct toxicity of this species on invertebrate and vertebrate marine organisms, we performed an ecotoxicological screening to investigate the toxic effects of different concentrations of O. ovata (cultured in the laboratory and sampled in the field during blooms) on crustaceans and fish as model organisms. Artemia salina, Tigriopus fulvus, and Amphibalanus amphitrite larvae and juveniles of the sea bass Dicentrarchus labrax were used as model species. Toxic effects associated with cultured O. ovata cells were investigated using a crossed design: testing two different temperatures (20 and 25 °C), four different cell concentrations, and four treatments (untreated O. ovata culture, filtered and resuspended algal cells, growth medium devoid of algal cells, and sonicated algal cells). The results indicate that the toxicity of cultured O. ovata is related to the presence of living O. ovata cells, and that this effect is amplified by temperature. Furthermore, both tests with laboratory cultured algae and field sampled cells pointed out that A. salina is the most sensitive species even at concentrations below the Environmental Alarm Threshold set by the Italian Ministry of Health. Some possible explanations of such sensitivity are discussed, taking into account evidence of O. ovata cells ingestion and the activity of its toxins on the Na⁺/K⁺-ATPase.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Dinoflagellida/química , Proliferação Nociva de Algas , Toxinas Marinhas/toxicidade , Animais , Bass , Bioensaio , Crustáceos/efeitos dos fármacos , Dose Letal Mediana , Temperatura
18.
Mar Pollut Bull ; 62(12): 2681-91, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22030108

RESUMO

To study environment characteristics favoring the toxic benthic dinoflagellate Ostreopsis cf. ovata, a survey was conducted in Monaco (NW Mediterranean Sea), in summers 2007 and 2008. Epiphytic and planktonic blooms occurred almost simultaneously and a high variation of abundances at low spatial scales was observed. An early and very marked bloom occurred in 2007, compared to a later and less abundant development in 2008. These distinct patterns in bloom timing corresponded with very different hydroclimatic scenarios in 2007 (hot spring and relatively cold summer) and 2008 (standard year compared to the median year profile estimated with data from 1995 to 2008). No clear impacts of summer seawater temperature, rainfall or nutrient concentrations were evident. Strong wind may favor the dispersal of benthic and planktonic cells. Our study suggests that further investigations are needed to examine the potential role of Ostreopsis nutritional mode (i.e. autotrophy vs. mixotrophy).


Assuntos
Dinoflagellida/crescimento & desenvolvimento , Eutrofização , Mar Mediterrâneo , Mônaco , Reação em Cadeia da Polimerase , Dinâmica Populacional , Estações do Ano , Temperatura , Tempo (Meteorologia)
19.
Toxicon ; 57(3): 408-20, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21145339

RESUMO

Harmful benthic microalgae blooms represent an emergent phenomenon in temperate zones, causing health, ecological and economic concern. The main goal of this work was to compile records of Ostreopsis at large temporal and spatial scales, in order to study the relationship between cell abundances, the periodicity and intensity of the blooms and the role of sea water temperature in 14 Spanish, French, Monegasque and Italian sites located along the northern limits of the Mediterranean Sea. General trends were observed in the two considered basins: the north-western Mediterranean Sea, in which higher cell abundances were mostly recorded in mid-summer (end of July), and the northern Adriatic Sea where they occur in early fall (end of September). The sea-water temperature does not seem to be a primary driver, and the maximal abundance periods were site and year specific. Such results represent an important step in the understanding of harmful benthic microalgae blooms in temperate areas, and provide a good base for policy makers and managers in the attempt to monitor and forecast benthic harmful microalgae blooms.


Assuntos
Demografia , Dinoflagellida/crescimento & desenvolvimento , Proliferação Nociva de Algas , França , Itália , Mar Mediterrâneo , Dinâmica Populacional , Espanha , Temperatura
20.
Mar Pollut Bull ; 55(1-6): 30-41, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17010997

RESUMO

The assessment of the ecological status, as required by the Water Framework Directive (WFD), plays an important role in coastal zone management, but only a small number of ecological indices are applicable on rocky bottoms. In this study, we apply a previously defined ecological quality index based on the cartography of littoral and upper-sublittoral rocky-shore communities (CARLIT), based on the sensitivity of algae dominated communities to anthropogenic impacts along a moderate urban gradient. We also apply this index in four Marine Protected Areas (MPAs), proposed as reference sites at a regional scale. After comparing the outputs with water variables and other quality indices, we can affirm that (1) the CARLIT index is suitable to detect different kinds of anthropogenic pressures, that (2) the choice of proper reference sites is a focal point in the fulfilment of the WFD (Water Framework Directive) and that (3) historical data are important to define reference conditions and the degradation of ecological status.


Assuntos
Bactérias/crescimento & desenvolvimento , Conservação dos Recursos Naturais/métodos , Ecossistema , Monitoramento Ambiental/estatística & dados numéricos , Eucariotos/crescimento & desenvolvimento , Biologia Marinha/métodos , Água do Mar/química , Urbanização/tendências , Monitoramento Ambiental/métodos , Geografia , Itália , Mar Mediterrâneo , Densidade Demográfica , Valores de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA