Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
ACS Omega ; 9(16): 18687, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38680303

RESUMO

[This corrects the article DOI: 10.1021/acsomega.3c02630.].

2.
ACS Omega ; 8(41): 37830-37841, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37867662

RESUMO

Continued dependence on crude oil and natural gas resources for fossil fuels has caused global atmospheric carbon dioxide (CO2) emissions to increase to record-setting proportions. There is an urgent need for efficient and inexpensive carbon sequestration systems to mitigate large-scale emissions of CO2 from industrial flue gas. Carbonic anhydrase (CA) has shown high potential for enhanced CO2 capture applications compared to conventional absorption-based methods currently utilized in various industrial settings. This study aims to understand structural aspects that contribute to the stability of CA enzymes critical for their applications in industrial processes, which require the ability to withstand conditions different from those in their native environments. Here, we evaluated the thermostability and enzyme activity of mesophilic and thermophilic CA variants at different temperature conditions and in the presence of atmospheric gas pollutants like nitrogen oxides and sulfur oxides. Based on our enzyme activity assays and molecular dynamics simulations, we see increased conformational stability and CA activity levels in thermostable CA variants incubated week-long at different temperature conditions. The thermostable CA variants also retained high levels of CA activity despite changes in solution pH due to increasing NO and SO2 concentrations. A loss of CA activity was observed only at high concentrations of NO/SO2 that possibly can be minimized with the appropriate buffered solutions.

3.
PLoS One ; 7(6): e37924, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22719855

RESUMO

Glucose oxidase (GOx) is an enzymatic workhorse used in the food and wine industries to combat microbial contamination, to produce wines with lowered alcohol content, as the recognition element in amperometric glucose sensors, and as an anodic catalyst in biofuel cells. It is naturally produced by several species of fungi, and genetic variants are known to differ considerably in both stability and activity. Two of the more widely studied glucose oxidases come from the species Aspergillus niger (A. niger) and Penicillium amagasakiense (P. amag.), which have both had their respective genes isolated and sequenced. GOx from A. niger is known to be more stable than GOx from P. amag., while GOx from P. amag. has a six-fold superior substrate affinity (K(M)) and nearly four-fold greater catalytic rate (k(cat)). Here we sought to combine genetic elements from these two varieties to produce an enzyme displaying both superior catalytic capacity and stability. A comparison of the genes from the two organisms revealed 17 residues that differ between their active sites and cofactor binding regions. Fifteen of these residues in a parental A. niger GOx were altered to either mirror the corresponding residues in P. amag. GOx, or mutated into all possible amino acids via saturation mutagenesis. Ultimately, four mutants were identified with significantly improved catalytic activity. A single point mutation from threonine to serine at amino acid 132 (mutant T132S, numbering includes leader peptide) led to a three-fold improvement in k(cat) at the expense of a 3% loss of substrate affinity (increase in apparent K(M) for glucose) resulting in a specify constant (k(cat)/K(M)) of 23.8 (mM(-1) · s(-1)) compared to 8.39 for the parental (A. niger) GOx and 170 for the P. amag. GOx. Three other mutant enzymes were also identified that had improvements in overall catalysis: V42Y, and the double mutants T132S/T56V and T132S/V42Y, with specificity constants of 31.5, 32.2, and 31.8 mM(-1) · s(-1), respectively. The thermal stability of these mutants was also measured and showed moderate improvement over the parental strain.


Assuntos
Glucose Oxidase/metabolismo , Aspergillus niger/enzimologia , Biocatálise , Estabilidade Enzimática , Glucose Oxidase/química , Glucose Oxidase/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Penicillium/enzimologia , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA