Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nat Commun ; 15(1): 2486, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509072

RESUMO

Protein synthesis terminates when a stop codon enters the ribosome's A-site. Although termination is efficient, stop codon readthrough can occur when a near-cognate tRNA outcompetes release factors during decoding. Seeking to understand readthrough regulation we used a machine learning approach to analyze readthrough efficiency data from published HEK293T ribosome profiling experiments and compared it to comparable yeast experiments. We obtained evidence for the conservation of identities of the stop codon, its context, and 3'-UTR length (when termination is compromised), but not the P-site codon, suggesting a P-site tRNA role in readthrough regulation. Models trained on data from cells treated with the readthrough-promoting drug, G418, accurately predicted readthrough of premature termination codons arising from CFTR nonsense alleles that cause cystic fibrosis. This predictive ability has the potential to aid development of nonsense suppression therapies by predicting a patient's likelihood of improvement in response to drugs given their nonsense mutation sequence context.


Assuntos
Códon sem Sentido , Biossíntese de Proteínas , Humanos , Códon de Terminação/genética , Códon sem Sentido/genética , Células HEK293 , Biossíntese de Proteínas/genética , RNA de Transferência/genética , RNA de Transferência/metabolismo
2.
bioRxiv ; 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37398227

RESUMO

Cytoplasmic poly(A)-binding protein (PABPC; Pab1 in yeast) is thought to be involved in multiple steps of post-transcriptional control, including translation initiation, translation termination, and mRNA decay. To understand these roles of PABPC in more detail for endogenous mRNAs, and to distinguish its direct effects from indirect effects, we have employed RNA-Seq and Ribo-Seq to analyze changes in the abundance and translation of the yeast transcriptome, as well as mass spectrometry to assess the abundance of the components of the yeast proteome, in cells lacking the PAB1 gene. We observed drastic changes in the transcriptome and proteome, as well as defects in translation initiation and termination, in pab1Δ cells. Defects in translation initiation and the stabilization of specific classes of mRNAs in pab1Δ cells appear to be partly indirect consequences of reduced levels of specific initiation factors, decapping activators, and components of the deadenylation complex in addition to the general loss of Pab1's direct role in these processes. Cells devoid of Pab1 also manifested a nonsense codon readthrough phenotype indicative of a defect in translation termination, but this defect may be a direct effect of the loss of Pab1 as it could not be attributed to significant reductions in the levels of release factors.

3.
RNA ; 28(12): 1621-1642, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36192133

RESUMO

Upf1, Upf2, and Upf3, the central regulators of nonsense-mediated mRNA decay (NMD), appear to exercise their NMD functions while bound to elongating ribosomes, and evidence for this conclusion is particularly compelling for Upf1. Hence, we used selective profiling of yeast Upf1:ribosome association to define that step in greater detail, understand whether the nature of the mRNA being translated influences Upf1:80S interaction, and elucidate the functions of ribosome-associated Upf1. Our approach has allowed us to clarify the timing and specificity of Upf1 association with translating ribosomes, obtain evidence for a Upf1 mRNA surveillance function that precedes the activation of NMD, identify a unique ribosome state that generates 37-43 nt ribosome footprints whose accumulation is dependent on Upf1's ATPase activity, and demonstrate that a mutated form of Upf1 can interfere with normal translation termination and ribosome release. In addition, our results strongly support the existence of at least two distinct functional Upf1 complexes in the NMD pathway.


Assuntos
Degradação do RNAm Mediada por Códon sem Sentido , RNA Helicases , RNA Helicases/genética , RNA Helicases/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
PLoS Genet ; 17(4): e1009538, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33878104

RESUMO

Translation of mRNA into a polypeptide is terminated when the release factor eRF1 recognizes a UAA, UAG, or UGA stop codon in the ribosomal A site and stimulates nascent peptide release. However, stop codon readthrough can occur when a near-cognate tRNA outcompetes eRF1 in decoding the stop codon, resulting in the continuation of the elongation phase of protein synthesis. At the end of a conventional mRNA coding region, readthrough allows translation into the mRNA 3'-UTR. Previous studies with reporter systems have shown that the efficiency of termination or readthrough is modulated by cis-acting elements other than stop codon identity, including two nucleotides 5' of the stop codon, six nucleotides 3' of the stop codon in the ribosomal mRNA channel, and stem-loop structures in the mRNA 3'-UTR. It is unknown whether these elements are important at a genome-wide level and whether other mRNA features proximal to the stop codon significantly affect termination and readthrough efficiencies in vivo. Accordingly, we carried out ribosome profiling analyses of yeast cells expressing wild-type or temperature-sensitive eRF1 and developed bioinformatics strategies to calculate readthrough efficiency, and to identify mRNA and peptide features which influence that efficiency. We found that the stop codon (nt +1 to +3), the nucleotide after it (nt +4), the codon in the P site (nt -3 to -1), and 3'-UTR length are the most influential features in the control of readthrough efficiency, while nts +5 to +9 had milder effects. Additionally, we found low readthrough genes to have shorter 3'-UTRs compared to high readthrough genes in cells with thermally inactivated eRF1, while this trend was reversed in wild-type cells. Together, our results demonstrated the general roles of known regulatory elements in genome-wide regulation and identified several new mRNA or peptide features affecting the efficiency of translation termination and readthrough.


Assuntos
Códon de Terminação/genética , Terminação Traducional da Cadeia Peptídica/genética , Fatores de Terminação de Peptídeos/genética , Proteínas de Saccharomyces cerevisiae/genética , Transcriptoma/genética , Regiões 3' não Traduzidas , Biologia Computacional , Humanos , Fases de Leitura Aberta/genética , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , RNA de Transferência/genética , Ribossomos/genética , Saccharomyces cerevisiae/genética
5.
PLoS One ; 15(12): e0243655, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33315879

RESUMO

X-linked Dystonia-Parkinsonism (XDP) is a neurodegenerative disease linked to an insertion of a SINE-VNTR-Alu (SVA)-type retrotransposon within an intron of TAF1. This SVA insertion induces aberrant TAF1 splicing and partial intron retention, thereby decreasing levels of the full-length transcript. Here we sought to determine if these altered transcriptional dynamics caused by the SVA are also accompanied by local changes in histone acetylation, given that these modifications influence gene expression. Because TAF1 protein may itself exhibit histone acetyltransferase activity, we also examined whether decreased TAF1 expression in XDP cell lines and post-mortem brain affects global levels of acetylated histone H3 (AcH3). The results demonstrate that total AcH3 are not altered in XDP post-mortem prefrontal cortex or cell lines. We also did not detect local differences in AcH3 associated with TAF1 exons or intronic sites flanking the SVA insertion. There was, however, a decrease in AcH3 association with the exon immediately proximal to the intronic SVA, and this decrease was normalized by CRISPR/Cas-excision of the SVA. Collectively, these data suggest that the SVA insertion alters histone status in this region, which may contribute to the dysregulation of TAF1 expression.


Assuntos
Distúrbios Distônicos/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Histona Acetiltransferases/genética , Histonas/metabolismo , Fatores Associados à Proteína de Ligação a TATA/genética , Fator de Transcrição TFIID/genética , Acetilação , Células Cultivadas , Distúrbios Distônicos/metabolismo , Fibroblastos/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Humanos , Íntrons , Retroelementos
6.
Proc Natl Acad Sci U S A ; 114(51): E11020-E11028, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29229810

RESUMO

X-linked dystonia-parkinsonism (XDP) is a neurodegenerative disease associated with an antisense insertion of a SINE-VNTR-Alu (SVA)-type retrotransposon within an intron of TAF1 This unique insertion coincides with six additional noncoding sequence changes in TAF1, the gene that encodes TATA-binding protein-associated factor-1, which appear to be inherited together as an identical haplotype in all reported cases. Here we examined the sequence of this SVA in XDP patients (n = 140) and detected polymorphic variation in the length of a hexanucleotide repeat domain, (CCCTCT)n The number of repeats in these cases ranged from 35 to 52 and showed a highly significant inverse correlation with age at disease onset. Because other SVAs exhibit intrinsic promoter activity that depends in part on the hexameric domain, we assayed the transcriptional regulatory effects of varying hexameric lengths found in the unique XDP SVA retrotransposon using luciferase reporter constructs. When inserted sense or antisense to the luciferase reading frame, the XDP variants repressed or enhanced transcription, respectively, to an extent that appeared to vary with length of the hexamer. Further in silico analysis of this SVA sequence revealed multiple motifs predicted to form G-quadruplexes, with the greatest potential detected for the hexameric repeat domain. These data directly link sequence variation within the XDP-specific SVA sequence to phenotypic variability in clinical disease manifestation and provide insight into potential mechanisms by which this intronic retroelement may induce transcriptional interference in TAF1 expression.


Assuntos
Expansão das Repetições de DNA , Distúrbios Distônicos/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Histona Acetiltransferases/genética , Retroelementos , Elementos Nucleotídeos Curtos e Dispersos , Fatores Associados à Proteína de Ligação a TATA/genética , Fator de Transcrição TFIID/genética , Ordem dos Genes , Estudos de Associação Genética , Loci Gênicos , Humanos , Masculino , Modelos Biológicos , Linhagem , Fenótipo , Regiões Promotoras Genéticas , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA