RESUMO
OBJECTIVE: Psoriatic disease remains underdiagnosed and undertreated. We developed and validated a suite of novel, sensor-based smartphone assessments (Psorcast app) that can be self-administered to measure cutaneous and musculoskeletal signs and symptoms of psoriatic disease. METHODS: Participants with psoriasis (PsO) or psoriatic arthritis (PsA) and healthy controls were recruited between June 5, 2019, and November 10, 2021, at 2 academic medical centers. Concordance and accuracy of digital measures and image-based machine learning models were compared to their analogous clinical measures from trained rheumatologists and dermatologists. RESULTS: Of 104 study participants, 51 (49%) were female and 53 (51%) were male, with a mean age of 42.3 years (SD 12.6). Seventy-nine (76%) participants had PsA, 16 (15.4%) had PsO, and 9 (8.7%) were healthy controls. Digital patient assessment of percent body surface area (BSA) affected with PsO demonstrated very strong concordance (Lin concordance correlation coefficient [CCC] 0.94 [95% CI 0.91-0.96]) with physician-assessed BSA. The in-clinic and remote target plaque physician global assessments showed fair-to-moderate concordance (CCCerythema 0.72 [0.59-0.85]; CCCinduration 0.72 [0.62-0.82]; CCCscaling 0.60 [0.48-0.72]). Machine learning models of hand photos taken by patients accurately identified clinically diagnosed nail PsO with an accuracy of 0.76. The Digital Jar Open assessment categorized physician-assessed upper extremity involvement, considering joint tenderness or enthesitis (AUROC 0.68 [0.47-0.85]). CONCLUSION: The Psorcast digital assessments achieved significant clinical validity, although they require further validation in larger cohorts before use in evidence-based medicine or clinical trial settings. The smartphone software and analysis pipelines from the Psorcast suite are open source and freely available.
Assuntos
Artrite Psoriásica , Aprendizado de Máquina , Psoríase , Smartphone , Humanos , Artrite Psoriásica/diagnóstico , Feminino , Masculino , Psoríase/diagnóstico , Adulto , Pessoa de Meia-Idade , Estudo de Prova de Conceito , Aplicativos Móveis , Reprodutibilidade dos TestesRESUMO
INTRODUCTION: Alzheimer's disease (AD) is the predominant dementia globally, with heterogeneous presentation and penetrance of clinical symptoms, variable presence of mixed pathologies, potential disease subtypes, and numerous associated endophenotypes. Beyond the difficulty of designing treatments that address the core pathological characteristics of the disease, therapeutic development is challenged by the uncertainty of which endophenotypic areas and specific targets implicated by those endophenotypes to prioritize for further translational research. However, publicly funded consortia driving large-scale open science efforts have produced multiple omic analyses that address both disease risk relevance and biological process involvement of genes across the genome. METHODS: Here we report the development of an informatic pipeline that draws from genetic association studies, predicted variant impact, and linkage with dementia associated phenotypes to create a genetic risk score. This is paired with a multi-omic risk score utilizing extensive sets of both transcriptomic and proteomic studies to identify system-level changes in expression associated with AD. These two elements combined constitute our target risk score that ranks AD risk genome-wide. The ranked genes are organized into endophenotypic space through the development of 19 biological domains associated with AD in the described genetics and genomics studies and accompanying literature. The biological domains are constructed from exhaustive Gene Ontology (GO) term compilations, allowing automated assignment of genes into objectively defined disease-associated biology. This rank-and-organize approach, performed genome-wide, allows the characterization of aggregations of AD risk across biological domains. RESULTS: The top AD-risk-associated biological domains are Synapse, Immune Response, Lipid Metabolism, Mitochondrial Metabolism, Structural Stabilization, and Proteostasis, with slightly lower levels of risk enrichment present within the other 13 biological domains. DISCUSSION: This provides an objective methodology to localize risk within specific biological endophenotypes and drill down into the most significantly associated sets of GO terms and annotated genes for potential therapeutic targets.
RESUMO
Alzheimer's disease (AD) drug discovery has focused on a set of highly studied therapeutic hypotheses, with limited success. The heterogeneous nature of AD processes suggests that a more diverse, systems-integrated strategy may identify new therapeutic hypotheses. Although many target hypotheses have arisen from systems-level modeling of human disease, in practice and for many reasons, it has proven challenging to translate them into drug discovery pipelines. First, many hypotheses implicate protein targets and/or biological mechanisms that are under-studied, meaning there is a paucity of evidence to inform experimental strategies as well as high-quality reagents to perform them. Second, systems-level targets are predicted to act in concert, requiring adaptations in how we characterize new drug targets. Here we posit that the development and open distribution of high-quality experimental reagents and informatic outputs-termed target enabling packages (TEPs)-will catalyze rapid evaluation of emerging systems-integrated targets in AD by enabling parallel, independent, and unencumbered research.
RESUMO
Genetics play an important role in late-onset Alzheimer's Disease (AD) etiology and dozens of genetic variants have been implicated in AD risk through large-scale GWAS meta-analyses. However, the precise mechanistic effects of most of these variants have yet to be determined. Deeply phenotyped cohort data can reveal physiological changes associated with genetic risk for AD across an age spectrum that may provide clues to the biology of the disease. We utilized over 2000 high-quality quantitative measurements obtained from blood of 2831 cognitively normal adult clients of a consumer-based scientific wellness company, each with CLIA-certified whole-genome sequencing data. Measurements included: clinical laboratory blood tests, targeted chip-based proteomics, and metabolomics. We performed a phenome-wide association study utilizing this diverse blood marker data and 25 known AD genetic variants and an AD-specific polygenic risk score (PGRS), adjusting for sex, age, vendor (for clinical labs), and the first four genetic principal components; sex-SNP interactions were also assessed. We observed statistically significant SNP-analyte associations for five genetic variants after correction for multiple testing (for SNPs in or near NYAP1, ABCA7, INPP5D, and APOE), with effects detectable from early adulthood. The ABCA7 SNP and the APOE2 and APOE4 encoding alleles were associated with lipid variability, as seen in previous studies; in addition, six novel proteins were associated with the e2 allele. The most statistically significant finding was between the NYAP1 variant and PILRA and PILRB protein levels, supporting previous functional genomic studies in the identification of a putative causal variant within the PILRA gene. We did not observe associations between the PGRS and any analyte. Sex modified the effects of four genetic variants, with multiple interrelated immune-modulating effects associated with the PICALM variant. In post-hoc analysis, sex-stratified GWAS results from an independent AD case-control meta-analysis supported sex-specific disease effects of the PICALM variant, highlighting the importance of sex as a biological variable. Known AD genetic variation influenced lipid metabolism and immune response systems in a population of non-AD individuals, with associations observed from early adulthood onward. Further research is needed to determine whether and how these effects are implicated in early-stage biological pathways to AD. These analyses aim to complement ongoing work on the functional interpretation of AD-associated genetic variants.
Assuntos
Doença de Alzheimer , Transportadores de Cassetes de Ligação de ATP/genética , Adulto , Doença de Alzheimer/genética , Apolipoproteína E2/genética , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genômica , Humanos , Masculino , Polimorfismo de Nucleotídeo ÚnicoRESUMO
[This corrects the article DOI: 10.3389/fnagi.2021.735524.].
RESUMO
Remote health assessments that gather real-world data (RWD) outside clinic settings require a clear understanding of appropriate methods for data collection, quality assessment, analysis and interpretation. Here we examine the performance and limitations of smartphones in collecting RWD in the remote mPower observational study of Parkinson's disease (PD). Within the first 6 months of study commencement, 960 participants had enrolled and performed at least five self-administered active PD symptom assessments (speeded tapping, gait/balance, phonation or memory). Task performance, especially speeded tapping, was predictive of self-reported PD status (area under the receiver operating characteristic curve (AUC) = 0.8) and correlated with in-clinic evaluation of disease severity (r = 0.71; P < 1.8 × 10-6) when compared with motor Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS). Although remote assessment requires careful consideration for accurate interpretation of RWD, our results support the use of smartphones and wearables in objective and personalized disease assessments.
Assuntos
Doença de Parkinson , Smartphone , Marcha , Humanos , Movimento , Doença de Parkinson/diagnóstico , Índice de Gravidade de DoençaRESUMO
Late-onset Alzheimer's disease (AD; LOAD) is the most common human neurodegenerative disease, however, the availability and efficacy of disease-modifying interventions is severely lacking. Despite exceptional efforts to understand disease progression via legacy amyloidogenic transgene mouse models, focus on disease translation with innovative mouse strains that better model the complexity of human AD is required to accelerate the development of future treatment modalities. LOAD within the human population is a polygenic and environmentally influenced disease with many risk factors acting in concert to produce disease processes parallel to those often muted by the early and aggressive aggregate formation in popular mouse strains. In addition to extracellular deposits of amyloid plaques and inclusions of the microtubule-associated protein tau, AD is also defined by synaptic/neuronal loss, vascular deficits, and neuroinflammation. These underlying processes need to be better defined, how the disease progresses with age, and compared to human-relevant outcomes. To create more translatable mouse models, MODEL-AD (Model Organism Development and Evaluation for Late-onset AD) groups are identifying and integrating disease-relevant, humanized gene sequences from public databases beginning with APOEε4 and Trem2*R47H, two of the most powerful risk factors present in human LOAD populations. Mice expressing endogenous, humanized APOEε4 and Trem2*R47H gene sequences were extensively aged and assayed using a multi-disciplined phenotyping approach associated with and relative to human AD pathology. Robust analytical pipelines measured behavioral, transcriptomic, metabolic, and neuropathological phenotypes in cross-sectional cohorts for progression of disease hallmarks at all life stages. In vivo PET/MRI neuroimaging revealed regional alterations in glycolytic metabolism and vascular perfusion. Transcriptional profiling by RNA-Seq of brain hemispheres identified sex and age as the main sources of variation between genotypes including age-specific enrichment of AD-related processes. Similarly, age was the strongest determinant of behavioral change. In the absence of mouse amyloid plaque formation, many of the hallmarks of AD were not observed in this strain. However, as a sensitized baseline model with many additional alleles and environmental modifications already appended, the dataset from this initial MODEL-AD strain serves an important role in establishing the individual effects and interaction between two strong genetic risk factors for LOAD in a mouse host.
RESUMO
The ability to investigate therapeutic interventions in animal models of neurodegenerative diseases depends on extensive characterization of the model(s) being used. There are numerous models that have been generated to study Alzheimer's disease (AD) and the underlying pathogenesis of the disease. While transgenic models have been instrumental in understanding AD mechanisms and risk factors, they are limited in the degree of characteristics displayed in comparison with AD in humans, and the full spectrum of AD effects has yet to be recapitulated in a single mouse model. The Model Organism Development and Evaluation for Late-Onset Alzheimer's Disease (MODEL-AD) consortium was assembled by the National Institute on Aging (NIA) to develop more robust animal models of AD with increased relevance to human disease, standardize the characterization of AD mouse models, improve preclinical testing in animals, and establish clinically relevant AD biomarkers, among other aims toward enhancing the translational value of AD models in clinical drug design and treatment development. Here we have conducted a detailed characterization of the 5XFAD mouse, including transcriptomics, electroencephalogram, in vivo imaging, biochemical characterization, and behavioral assessments. The data from this study is publicly available through the AD Knowledge Portal.
RESUMO
BACKGROUND: Maximal oxygen consumption (VO2max) is one of the most predictive biometrics for cardiovascular health and overall mortality. However, VO2max is rarely measured in large-scale research studies or routine clinical care because of the high cost, participant burden, and requirement for specialized equipment and staff. OBJECTIVE: To overcome the limitations of clinical VO2max measurement, we aim to develop a digital VO2max estimation protocol that can be self-administered remotely using only the sensors within a smartphone. We also aim to validate this measure within a broadly representative population across a spectrum of smartphone devices. METHODS: Two smartphone-based VO2max estimation protocols were developed: a 12-minute run test (12-MRT) based on distance measured by GPS and a 3-minute step test (3-MST) based on heart rate recovery measured by a camera. In a 101-person cohort, balanced across age deciles and sex, participants completed a gold standard treadmill-based VO2max measurement, two silver standard clinical protocols, and the smartphone-based 12-MRT and 3-MST protocols in the clinic and at home. In a separate 120-participant cohort, the video-based heart rate measurement underlying the 3-MST was measured for accuracy in individuals across the spectrum skin tones while using 8 different smartphones ranging in cost from US $99 to US $999. RESULTS: When compared with gold standard VO2max testing, Lin concordance was pc=0.66 for 12-MRT and pc=0.61 for 3-MST. However, in remote settings, the 12-MRT was significantly less concordant with the gold standard (pc=0.25) compared with the 3-MST (pc=0.61), although both had high test-retest reliability (12-MRT intraclass correlation coefficient=0.88; 3-MST intraclass correlation coefficient=0.86). On the basis of the finding that 3-MST concordance was generalizable to remote settings whereas 12-MRT was not, the video-based heart rate measure within the 3-MST was selected for further investigation. Heart rate measurements in any of the combinations of the six Fitzpatrick skin tones and 8 smartphones resulted in a concordance of pc≥0.81. Performance did not correlate with device cost, with all phones selling under US $200 performing better than pc>0.92. CONCLUSIONS: These findings demonstrate the importance of validating mobile health measures in the real world across a diverse cohort and spectrum of hardware. The 3-MST protocol, termed as heart snapshot, measured VO2max with similar accuracy to supervised in-clinic tests such as the Tecumseh (pc=0.94) protocol, while also generalizing to remote and unsupervised measurements. Heart snapshot measurements demonstrated fidelity across demographic variation in age and sex, across diverse skin pigmentation, and between various iOS and Android phone configurations. This software is freely available for all validation data and analysis code.
Assuntos
Teste de Esforço , Smartphone , Frequência Cardíaca , Humanos , Consumo de Oxigênio , Reprodutibilidade dos TestesRESUMO
BACKGROUND: Alzheimer's disease (AD) is an incurable neurodegenerative disease currently affecting 1.75% of the US population, with projected growth to 3.46% by 2050. Identifying common genetic variants driving differences in transcript expression that confer AD risk is necessary to elucidate AD mechanism and develop therapeutic interventions. We modify the FUSION transcriptome-wide association study (TWAS) pipeline to ingest gene expression values from multiple neocortical regions. METHODS: A combined dataset of 2003 genotypes clustered to 1000 Genomes individuals from Utah with Northern and Western European ancestry (CEU) was used to construct a training set of 790 genotypes paired to 888 RNASeq profiles from temporal cortex (TCX = 248), prefrontal cortex (FP = 50), inferior frontal gyrus (IFG = 41), superior temporal gyrus (STG = 34), parahippocampal cortex (PHG = 34), and dorsolateral prefrontal cortex (DLPFC = 461). Following within-tissue normalization and covariate adjustment, predictive weights to impute expression components based on a gene's surrounding cis-variants were trained. The FUSION pipeline was modified to support input of pre-scaled expression values and support cross validation with a repeated measure design arising from the presence of multiple transcriptome samples from the same individual across different tissues. RESULTS: Cis-variant architecture alone was informative to train weights and impute expression for 6780 (49.67%) autosomal genes, the majority of which significantly correlated with gene expression; FDR < 5%: N = 6775 (99.92%), Bonferroni: N = 6716 (99.06%). Validation of weights in 515 matched genotype to RNASeq profiles from the CommonMind Consortium (CMC) was (72.14%) in DLPFC profiles. Association of imputed expression components from all 2003 genotype profiles yielded 8 genes significantly associated with AD (FDR < 0.05): APOC1, EED, CD2AP, CEACAM19, CLPTM1, MTCH2, TREM2, and KNOP1. CONCLUSIONS: We provide evidence of cis-genetic variation conferring AD risk through 8 genes across six distinct genomic loci. Moreover, we provide expression weights for 6780 genes as a valuable resource to the community, which can be abstracted across the neocortex and a wide range of neuronal phenotypes.
Assuntos
Doença de Alzheimer/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Neocórtex/metabolismo , Locos de Características Quantitativas , Transcriptoma , Biologia Computacional/métodos , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla/métodos , Humanos , Especificidade de Órgãos/genéticaRESUMO
Consumer wearables and sensors are a rich source of data about patients' daily disease and symptom burden, particularly in the case of movement disorders like Parkinson's disease (PD). However, interpreting these complex data into so-called digital biomarkers requires complicated analytical approaches, and validating these biomarkers requires sufficient data and unbiased evaluation methods. Here we describe the use of crowdsourcing to specifically evaluate and benchmark features derived from accelerometer and gyroscope data in two different datasets to predict the presence of PD and severity of three PD symptoms: tremor, dyskinesia, and bradykinesia. Forty teams from around the world submitted features, and achieved drastically improved predictive performance for PD status (best AUROC = 0.87), as well as tremor- (best AUPR = 0.75), dyskinesia- (best AUPR = 0.48) and bradykinesia-severity (best AUPR = 0.95).
RESUMO
Discovering drugs that efficiently treat brain diseases has been challenging. Genetic variants that modulate the expression of potential drug targets can be utilized to assess the efficacy of therapeutic interventions. We therefore employed Mendelian Randomization (MR) on gene expression measured in brain tissue to identify drug targets involved in neurological and psychiatric diseases. We conducted a two-sample MR using cis-acting brain-derived expression quantitative trait loci (eQTLs) from the Accelerating Medicines Partnership for Alzheimer's Disease consortium (AMP-AD) and the CommonMind Consortium (CMC) meta-analysis study (n = 1,286) as genetic instruments to predict the effects of 7,137 genes on 12 neurological and psychiatric disorders. We conducted Bayesian colocalization analysis on the top MR findings (using P<6x10-7 as evidence threshold, Bonferroni-corrected for 80,557 MR tests) to confirm sharing of the same causal variants between gene expression and trait in each genomic region. We then intersected the colocalized genes with known monogenic disease genes recorded in Online Mendelian Inheritance in Man (OMIM) and with genes annotated as drug targets in the Open Targets platform to identify promising drug targets. 80 eQTLs showed MR evidence of a causal effect, from which we prioritised 47 genes based on colocalization with the trait. We causally linked the expression of 23 genes with schizophrenia and a single gene each with anorexia, bipolar disorder and major depressive disorder within the psychiatric diseases and 9 genes with Alzheimer's disease, 6 genes with Parkinson's disease, 4 genes with multiple sclerosis and two genes with amyotrophic lateral sclerosis within the neurological diseases we tested. From these we identified five genes (ACE, GPNMB, KCNQ5, RERE and SUOX) as attractive drug targets that may warrant follow-up in functional studies and clinical trials, demonstrating the value of this study design for discovering drug targets in neuropsychiatric diseases.
Assuntos
Doença de Alzheimer/genética , Descoberta de Drogas , Predisposição Genética para Doença , Transcriptoma/genética , Doença de Alzheimer/tratamento farmacológico , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/genética , Transtorno Bipolar/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Estudo de Associação Genômica Ampla , Humanos , Análise da Randomização Mendeliana , Terapia de Alvo Molecular , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/patologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética , Esquizofrenia/patologiaRESUMO
Alzheimer's disease (AD) is a major cause of dementia, disability, and death in the elderly. Despite recent advances in our understanding of the basic biological mechanisms underlying AD, we do not know how to prevent it, nor do we have an approved disease-modifying intervention. Both are essential to slow or stop the growth in dementia prevalence. While our current animal models of AD have provided novel insights into AD disease mechanisms, thus far, they have not been successfully used to predict the effectiveness of therapies that have moved into AD clinical trials. The Model Organism Development and Evaluation for Late-onset Alzheimer's Disease (MODEL-AD; www.model-ad.org) Consortium was established to maximize human datasets to identify putative variants, genes, and biomarkers for AD; to generate, characterize, and validate the next generation of mouse models of AD; and to develop a preclinical testing pipeline. MODEL-AD is a collaboration among Indiana University (IU); The Jackson Laboratory (JAX); University of Pittsburgh School of Medicine (Pitt); Sage BioNetworks (Sage); and the University of California, Irvine (UCI) that will generate new AD modeling processes and pipelines, data resources, research results, standardized protocols, and models that will be shared through JAX's and Sage's proven dissemination pipelines with the National Institute on Aging-supported AD Centers, academic and medical research centers, research institutions, and the pharmaceutical industry worldwide.
RESUMO
A Correction to this paper has been published: https://doi.org/10.1038/s41467-020-20261-6.
RESUMO
The temporal molecular changes that lead to disease onset and progression in Alzheimer's disease (AD) are still unknown. Here we develop a temporal model for these unobserved molecular changes with a manifold learning method applied to RNA-Seq data collected from human postmortem brain samples collected within the ROS/MAP and Mayo Clinic RNA-Seq studies. We define an ordering across samples based on their similarity in gene expression and use this ordering to estimate the molecular disease stage-or disease pseudotime-for each sample. Disease pseudotime is strongly concordant with the burden of tau (Braak score, P = 1.0 × 10-5), Aß (CERAD score, P = 1.8 × 10-5), and cognitive diagnosis (P = 3.5 × 10-7) of late-onset (LO) AD. Early stage disease pseudotime samples are enriched for controls and show changes in basic cellular functions. Late stage disease pseudotime samples are enriched for late stage AD cases and show changes in neuroinflammation and amyloid pathologic processes. We also identify a set of late stage pseudotime samples that are controls and show changes in genes enriched for protein trafficking, splicing, regulation of apoptosis, and prevention of amyloid cleavage pathways. In summary, we present a method for ordering patients along a trajectory of LOAD disease progression from brain transcriptomic data.
Assuntos
Encéfalo/patologia , Degeneração Neural/patologia , Algoritmos , Doença de Alzheimer/patologia , Progressão da Doença , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Degeneração Neural/genética , Córtex Pré-Frontal/patologia , Fatores de Tempo , Aprendizado de Máquina não SupervisionadoRESUMO
BACKGROUND: Late-onset Alzheimer's disease (LOAD) is the most common form of dementia worldwide. To date, animal models of Alzheimer's have focused on rare familial mutations, due to a lack of frank neuropathology from models based on common disease genes. Recent multi-cohort studies of postmortem human brain transcriptomes have identified a set of 30 gene co-expression modules associated with LOAD, providing a molecular catalog of relevant endophenotypes. RESULTS: This resource enables precise gene-based alignment between new animal models and human molecular signatures of disease. Here, we describe a new resource to efficiently screen mouse models for LOAD relevance. A new NanoString nCounter® Mouse AD panel was designed to correlate key human disease processes and pathways with mRNA from mouse brains. Analysis of the 5xFAD mouse, a widely used amyloid pathology model, and three mouse models based on LOAD genetics carrying APOE4 and TREM2*R47H alleles demonstrated overlaps with distinct human AD modules that, in turn, were functionally enriched in key disease-associated pathways. Comprehensive comparison with full transcriptome data from same-sample RNA-Seq showed strong correlation between gene expression changes independent of experimental platform. CONCLUSIONS: Taken together, we show that the nCounter Mouse AD panel offers a rapid, cost-effective and highly reproducible approach to assess disease relevance of potential LOAD mouse models.
Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Microglia/metabolismo , Transcriptoma/fisiologia , Animais , Modelos Animais de Doenças , Redes Reguladoras de Genes/genética , CamundongosRESUMO
The AD Knowledge Portal (adknowledgeportal.org) is a public data repository that shares data and other resources generated by multiple collaborative research programs focused on aging, dementia, and Alzheimer's disease (AD). In this article, we highlight how to use the Portal to discover and download genomic variant and transcriptomic data from the same individuals. First, we show how to use the web interface to browse and search for data of interest using relevant file annotations. We demonstrate how to learn more about the context surrounding the data, including diagnostic criteria and methodological details about sample preparation and data analysis. We present two primary ways to download data-using a web interface, and using a programmatic method that provides access using the command line. Finally, we show how to merge separate sources of metadata into a comprehensive file that contains factors and covariates necessary in downstream analyses. © 2020 The Authors. Basic Protocol 1: Find and download files associated with a selected study Basic Protocol 2: Download files in bulk using the command line client Basic Protocol 3: Working with file annotations and metadata.
Assuntos
Envelhecimento , Doença de Alzheimer/terapia , Bases de Dados Genéticas/estatística & dados numéricos , Genômica/métodos , Armazenamento e Recuperação da Informação/métodos , Software , Doença de Alzheimer/diagnóstico , Genômica/estatística & dados numéricos , Humanos , InternetRESUMO
The availability of high-quality RNA-sequencing and genotyping data of post-mortem brain collections from consortia such as CommonMind Consortium (CMC) and the Accelerating Medicines Partnership for Alzheimer's Disease (AMP-AD) Consortium enable the generation of a large-scale brain cis-eQTL meta-analysis. Here we generate cerebral cortical eQTL from 1433 samples available from four cohorts (identifying >4.1 million significant eQTL for >18,000 genes), as well as cerebellar eQTL from 261 samples (identifying 874,836 significant eQTL for >10,000 genes). We find substantially improved power in the meta-analysis over individual cohort analyses, particularly in comparison to the Genotype-Tissue Expression (GTEx) Project eQTL. Additionally, we observed differences in eQTL patterns between cerebral and cerebellar brain regions. We provide these brain eQTL as a resource for use by the research community. As a proof of principle for their utility, we apply a colocalization analysis to identify genes underlying the GWAS association peaks for schizophrenia and identify a potentially novel gene colocalization with lncRNA RP11-677M14.2 (posterior probability of colocalization 0.975).
Assuntos
Córtex Cerebelar/metabolismo , Córtex Cerebral/metabolismo , Perfilação da Expressão Gênica , Locos de Características Quantitativas , Conjuntos de Dados como Assunto , Estudo de Associação Genômica Ampla , Humanos , Metanálise como Assunto , RNA Longo não Codificante/genética , Esquizofrenia/genéticaRESUMO
Background: Informed consent (IC) is critical to performing ethical research. Unfortunately, the IC process and supporting IC forms are frequently burdensome and do not necessarily meet the informational needs of participants. The intersecting legal and ethical challenges of obtaining IC from individuals with memory or cognitive deficits further exacerbate existing IC shortcomings. For this reason, study coordinators play a critical role in facilitating the IC process in Alzheimer's disease (AD) research. To identify opportunities to improve how IC is obtained in AD research, we examined the IC process from the perspectives of study coordinators at two Alzheimer's Disease Research Centers (ADRC). Methods: We performed semi-structured interviews with 15 study coordinators from two ADRC sites detailing their experience obtaining IC. Interviews were conducted in private, recorded, transcribed, and independently coded using the constant comparative method of grounded theory. Key themes were explored as they emerged. Results: Coordinators reported overall satisfaction with the IC process. However, many reported difficulties maintaining participant attention, explaining complex procedures, and addressing medical misinformation. Although the centers use site-specific consent forms, coordinators at both centers stressed that their IC is too long and the supporting IC forms are too complicated. Coordinators indicated modifying the IC process to the perceived needs of individual participants. Adaptations reported include altering the cadence and vocabulary they employ, using supplemental materials, varying the order of IC topics, and limiting the depth of information presented. Conclusion: A qualitative analysis of interviews with study coordinators reveals opportunities to improve how we obtain IC in AD research. These insights will be used to create an electronic informed consent (eConsent) designed to boost engagement, enhance trust, and improve understanding by supporting participants' direct agency in the IC process.