Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; 11(38): 5028-34, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26140499

RESUMO

Small clusters of two to three silica-coated nanocrystals coupled to plasmonic gap-bar antennas can exhibit photon antibunching, a characteristic of single quantum emitters. Through a detailed analysis of their photoluminescence emissions characteristics, it is shown that the observed photon antibunching is the evidence of coupled quantum dot formation resulting from the plasmonic enhancement of dipole-dipole interaction.

2.
ACS Nano ; 9(1): 840-9, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25521210

RESUMO

A fundamental understanding of the intrinsic optoelectronic properties of atomically thin transition-metal dichalcogenides (TMDs) is crucial for its integration into high performance semiconductor devices. Here, we investigate the transport properties of chemical vapor deposition (CVD) grown monolayer molybdenum disulfide (MoS2) under photoexcitation using correlated scanning photocurrent microscopy and photoluminescence imaging. We examined the effect of local phase transformation underneath the metal electrodes on the generation of photocurrent across the channel length with diffraction-limited spatial resolution. While maximum photocurrent generation occurs at the Schottky contacts of semiconducting (2H-phase) MoS2, after the metallic phase transformation (1T-phase), the photocurrent peak is observed toward the center of the device channel, suggesting a strong reduction of native Schottky barriers. Analysis using the bias and position dependence of the photocurrent indicates that the Schottky barrier heights are a few millielectron volts for 1T- and ∼ 200 meV for 2H-contacted devices. We also demonstrate that a reduction of native Schottky barriers in a 1T device enhances the photoresponsivity by more than 1 order of magnitude, a crucial parameter in achieving high-performance optoelectronic devices. The obtained results pave a way for the fundamental understanding of intrinsic optoelectronic properties of atomically thin TMDs where ohmic contacts are necessary for achieving high-efficiency devices with low power consumption.

3.
Small ; 10(14): 2892-901, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-24715631

RESUMO

Performing time-tagged, time-correlated, single-photon-counting studies on individual colloidal nanocrystal quantum dots (NQDs), the evolution of photoluminescence (PL) intensity-fluctuation behaviors in near-infrared (NIR) emitting type II, InP/CdS core-shell NQDs is investigated as a function of shell thickness. It is observed that Auger recombination and hot-carrier trapping compete in defining the PL intensity-fluctuation behavior for NQDs with thin shells, whereas the role of hot-carrier trapping dominates for NQDs with thick shells. These studies further reveal the distinct ramifications of altering either the excitation fluence or repetition rate. Specifically, an increase in laser pump fluence results in the creation of additional hot-carrier traps. Alternately, higher repetition rates cause a saturation in hot-carrier traps, thus activating Auger-related PL fluctuations. Furthermore, it is shown that Auger recombination of negatively charged excitons is suppressed more strongly than that of positively charged excitons because of the asymmetry in the electron-hole confinement in type II NQDs. Thus, this study provides new understanding of how both NQD structure (shell thickness and carrier-separation characteristics) and excitation conditions can be used to tune the PL stability, with important implications for room-temperature single-photon generation. Specifically, the first non-blinking NQD capable of single-photon emission in the near-infrared spectral regime is described.


Assuntos
Nanopartículas Metálicas/química , Pontos Quânticos/química , Compostos de Cádmio , Índio , Lasers Semicondutores , Luminescência , Nanopartículas Metálicas/classificação , Nanopartículas Metálicas/ultraestrutura , Nanotecnologia , Tamanho da Partícula , Fosfinas , Fótons , Pontos Quânticos/ultraestrutura , Compostos de Selênio , Sulfetos , Temperatura
4.
Nanoscale ; 6(7): 3712-20, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24569861

RESUMO

We present a systematic study of photoluminescence (PL) emission intensity and biexciton (BX) quantum yields (QYBX) in individual "giant" CdSe/CdS nanocrystals (g-NCs) as a function of g-NC core size and shell thickness. We show that g-NC core size significantly affects QYBX and can be utilized as an effective tuning parameter towards higher QYBX while keeping the total volume of the g-NC constant. Specifically, we observe that small-core (2.2 nm diameter) CdSe/CdS NCs with a volume of ∼200 nm(3) (shell comprises 4 CdS monolayers) show very low average and maximum QYBX's of ∼3 and 7%, respectively. In contrast, same-volume medium-core (3 nm diameter) NCs afford higher average values of ∼10%, while QYBX's of ∼30% are achieved for same-volume large-core (5.5 nm diameter) CdSe/CdS NCs, with some approaching ∼80%. These observations underline the influence of the g-NC core size on the evolution of PL emissive states in multi-shell NCs. Moreover, our study also reveals that the use of long anneal times in the growth of CdS shells plays a critical role in achieving high QYBX.

5.
Opt Express ; 21(6): 7419-26, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23546125

RESUMO

In single particle spectroscopy, the degree of observed fluorescence anti-bunching in a second-order cross correlation experiment is indicative of its bi-exciton quantum yield and whether or not a particle is well isolated. Advances in quantum dot synthesis have produced single particles with bi-exciton quantum yields approaching unity. Consequently, this creates uncertainty as to whether a particle has a high bi-exciton quantum yield or if it exists as a cluster. We report on a time-gated anti-bunching technique capable of determining the relative contributions of both multi-exciton emission and clustering effects. In this way, we can now unambiguously determine if a particle is single. Additionally, this time-gated anti-bunching approach provides an accurate way for the determination of bi-exciton lifetime with minimal contribution from higher order multi-exciton states.


Assuntos
Modelos Teóricos , Fotometria/métodos , Espectrometria de Fluorescência/métodos , Simulação por Computador , Luz , Fótons , Teoria Quântica
6.
Nano Lett ; 12(11): 5545-51, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23030497

RESUMO

Nonblinking excitonic emission from near-infrared and type-II nanocrystal quantum dots (NQDs) is reported for the first time. To realize this unusual degree of stability at the single-dot level, novel InP/CdS core/shell NQDs were synthesized for a range of shell thicknesses (~1-11 monolayers of CdS). Ensemble spectroscopy measurements (photoluminescence peak position and radiative lifetimes) and electronic structure calculations established the transition from type-I to type-II band alignment in these heterostructured NQDs. More significantly, single-NQD studies revealed clear evidence for blinking suppression that was not strongly shell-thickness dependent, while photobleaching and biexciton lifetimes trended explicitly with extent of shelling. Specifically, very long biexciton lifetimes-up to >7 ns-were obtained for the thickest-shell structures, indicating dramatic suppression of nonradiative Auger recombination. This new system demonstrates that electronic structure and shell thickness can be employed together to effect control over key single-dot and ensemble NQD photophysical properties.


Assuntos
Pontos Quânticos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Compostos de Cádmio/química , Eletrônica , Elétrons , Índio/química , Microscopia Eletrônica de Transmissão/métodos , Nanopartículas , Nanotecnologia/métodos , Paládio/química , Tamanho da Partícula , Fosfatos/química , Fotoquímica/métodos , Espectrometria de Fluorescência/métodos , Sulfetos/química , Temperatura , Fatores de Tempo
7.
J Am Chem Soc ; 134(23): 9634-43, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22578279

RESUMO

The growth of ultra-thick inorganic CdS shells over CdSe nanocrystal quantum dot (NQD) cores gives rise to a distinct class of NQD called the "giant" NQD (g-NQD). g-NQDs are characterized by unique photophysical properties compared to their conventional core/shell NQD counterparts, including suppressed fluorescence intermittency (blinking), photobleaching, and nonradiative Auger recombination. Here, we report new insights into the numerous synthetic conditions that influence the complex process of thick-shell growth. We show the individual and collective effects of multiple reaction parameters (noncoordinating solvent and coordinating-ligand identities and concentrations, precursor/NQD ratios, precursor reaction times, etc.) on determining g-NQD shape and crystalline phase, and the relationship between these structural features and optical properties. We find that hexagonally faceted wurzite g-NQDs afford the highest ensemble quantum yields in emission and the most complete suppression of blinking. Significantly, we also reveal a clear correlation between g-NQD particle volume and blinking suppression, such that larger cores afford blinking-suppressed behavior at relatively thinner shells compared to smaller starting core sizes, which require application of thicker shells to realize the same level of blinking suppression. We show that there is a common, threshold g-NQD volume (~750 nm(3)) that is required to observe blinking suppression and that this particle volume corresponds to an NQD radiative lifetime of ~65 ns regardless of starting core size. Combining new understanding of key synthetic parameters with optimized core/shell particle volumes, we demonstrate effectively complete suppression of blinking even for long observation times of ~1 h.

8.
Phys Rev Lett ; 107(3): 037403, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21838405

RESUMO

We demonstrate that the cycling between internal states of quantum dots during fluorescence blinking can be used to tune the near-field coupling with a sharp tip. In particular, the fluorescence emission from states with high quantum yield is quenched due to energy transfer, while that from low-yield states is elevated due to field enhancement. Thus, as a quantum dot blinks, its emission fluctuations are progressively suppressed upon approach of a tip.

9.
Nano Lett ; 10(10): 4049-54, 2010 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-20806915

RESUMO

Precision measurements of resonant energy transfer from isolated quantum dots (QDs) to individual carbon nanotubes (CNTs) exhibit unique features due to the one-dimensional nature of CNTs. In particular, excitons can be created at varying distances from the QD at different locations along the CNT length. This leads to large variations in energy transfer length scales for different QDs and a novel saturation of the energy transfer efficiency at ∼96%, seemingly independent of CNT chirality.

10.
Nano Lett ; 9(10): 3440-6, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19711903

RESUMO

We demonstrate a near-field tomography method for investigating the coupling between a nanoscopic probe and a fluorescent sample. By correlating the arrival of single fluorescence photons with the lateral and vertical position of an oscillating tip, a complete three-dimensional analysis of the near-field coupling is achieved. The technique is used to reveal a number of interesting three-dimensional near-field features and to improve image contrast in tip-enhanced fluorescence microscopy.

11.
Opt Express ; 16(9): 6183-93, 2008 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-18545320

RESUMO

We investigate the limits of one-photon fluorescence as a contrast mechanism in nanoscale-resolution tip-enhanced optical microscopy. Specifically, we examine the magnitude of tip-induced signal enhancement needed to resolve individual fluorophores within densely-packed ensembles. Modulation of fluorescence signals induced by an oscillating tip followed by demodulation with a lock-in amplifier increases image contrast by nearly two orders of magnitude. A theoretical model of this simple modulation/ demodulation scheme predicts an optimal value for the tip-oscillation amplitude that agrees with experimental measurements. Further, as an important step toward the eventual application of tip-enhanced fluorescence microscopy to the nanoscale structural analysis of biomolecular systems, we show that requisite signal enhancement factors are within the capabilities of commercially available silicon tips.


Assuntos
Corantes Fluorescentes/química , Microscopia de Fluorescência/métodos , Fótons , Pontos Quânticos
12.
Dev Dyn ; 236(11): 3088-99, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17937395

RESUMO

Transgenesis is an important tool for assessing gene function. In zebrafish, transgenesis has suffered from three problems: the labor of building complex expression constructs using conventional subcloning; low transgenesis efficiency, leading to mosaicism in transient transgenics and infrequent germline incorporation; and difficulty in identifying germline integrations unless using a fluorescent marker transgene. The Tol2kit system uses site-specific recombination-based cloning (multisite Gateway technology) to allow quick, modular assembly of [promoter]-[coding sequence]-[3' tag] constructs in a Tol2 transposon backbone. It includes a destination vector with a cmlc2:EGFP (enhanced green fluorescent protein) transgenesis marker and a variety of widely useful entry clones, including hsp70 and beta-actin promoters; cytoplasmic, nuclear, and membrane-localized fluorescent proteins; and internal ribosome entry sequence-driven EGFP cassettes for bicistronic expression. The Tol2kit greatly facilitates zebrafish transgenesis, simplifies the sharing of clones, and enables large-scale projects testing the functions of libraries of regulatory or coding sequences.


Assuntos
Animais Geneticamente Modificados , Clonagem Molecular/métodos , Elementos de DNA Transponíveis , DNA Recombinante/genética , Técnicas de Transferência de Genes , Peixe-Zebra/genética , Animais , Técnicas Genéticas , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Plasmídeos/genética , Recombinação Genética , Transposases/metabolismo , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA