Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1341, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351056

RESUMO

The survival of animals depends, among other things, on their ability to identify threats in their surrounding environment. Senses such as olfaction, vision and taste play an essential role in sampling their living environment, including microorganisms, some of which are potentially pathogenic. This study focuses on the mechanisms of detection of bacteria by the Drosophila gustatory system. We demonstrate that the peptidoglycan (PGN) that forms the cell wall of bacteria triggers an immediate feeding aversive response when detected by the gustatory system of adult flies. Although we identify ppk23+ and Gr66a+ gustatory neurons as necessary to transduce fly response to PGN, we demonstrate that they play very different roles in the process. Time-controlled functional inactivation and in vivo calcium imaging demonstrate that while ppk23+ neurons are required in the adult flies to directly transduce PGN signal, Gr66a+ neurons must be functional in larvae to allow future adults to become PGN sensitive. Furthermore, the ability of adult flies to respond to bacterial PGN is lost when they hatch from larvae reared under axenic conditions. Recolonization of germ-free larvae, but not adults, with a single bacterial species, Lactobacillus brevis, is sufficient to restore the ability of adults to respond to PGN. Our data demonstrate that the genetic and environmental characteristics of the larvae are essential to make the future adults competent to respond to certain sensory stimuli such as PGN.


Assuntos
Proteínas de Drosophila , Microbiota , Animais , Drosophila , Percepção Gustatória/fisiologia , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Larva/fisiologia , Paladar/fisiologia
2.
PLoS Biol ; 21(12): e3002432, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38079457

RESUMO

Behavior evolution can promote the emergence of agricultural pests by changing their ecological niche. For example, the insect pest Drosophila suzukii has shifted its oviposition (egg-laying) niche from fermented fruits to ripe, non-fermented fruits, causing significant damage to a wide range of fruit crops worldwide. We investigate the chemosensory changes underlying this evolutionary shift and ask whether fruit sugars, which are depleted during fermentation, are important gustatory cues that direct D. suzukii oviposition to sweet, ripe fruits. We show that D. suzukii has expanded its range of oviposition responses to lower sugar concentrations than the model D. melanogaster, which prefers to lay eggs on fermented fruit. The increased response of D. suzukii to sugar correlates with an increase in the value of sugar relative to a fermented strawberry substrate in oviposition decisions. In addition, we show by genetic manipulation of sugar-gustatory receptor neurons (GRNs) that sugar perception is required for D. suzukii to prefer a ripe substrate over a fermented substrate, but not for D. melanogaster to prefer the fermented substrate. Thus, sugar is a major determinant of D. suzukii's choice of complex substrates. Calcium imaging experiments in the brain's primary gustatory center (suboesophageal zone) show that D. suzukii GRNs are not more sensitive to sugar than their D. melanogaster counterparts, suggesting that increased sugar valuation is encoded in downstream circuits of the central nervous system (CNS). Taken together, our data suggest that evolutionary changes in central brain sugar valuation computations are involved in driving D. suzukii's oviposition preference for sweet, ripe fruit.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Feminino , Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Oviposição , Frutas , Proteínas de Drosophila/genética , Açúcares
3.
J Neurosci ; 42(41): 7809-7823, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36414007

RESUMO

Probing the external world is essential for eukaryotes to distinguish beneficial from pathogenic micro-organisms. If it is clear that the main part of this task falls to the immune cells, recent work shows that neurons can also detect microbes, although the molecules and mechanisms involved are less characterized. In Drosophila, detection of bacteria-derived peptidoglycan by pattern recognition receptors of the peptidoglycan recognition protein (PGRP) family expressed in immune cells triggers nuclear factor-κB (NF-κB)/immune deficiency (IMD)-dependent signaling. We show here that one PGRP protein, called PGRP-LB, is expressed in bitter gustatory neurons of proboscises. In vivo calcium imaging in female flies reveals that the PGRP/IMD pathway is cell-autonomously required in these neurons to transduce the peptidoglycan signal. We finally show that NF-κB/IMD pathway activation in bitter-sensing gustatory neurons influences fly behavior. This demonstrates that a major immune response elicitor and signaling module are required in the peripheral nervous system to sense the presence of bacteria in the environment.SIGNIFICANCE STATEMENT In addition to the classical immune response, eukaryotes rely on neuronally controlled mechanisms to detect microbes and engage in adapted behaviors. However, the mechanisms of microbe detection by the nervous system are poorly understood. Using genetic analysis and calcium imaging, we demonstrate here that bacteria-derived peptidoglycan can activate bitter gustatory neurons. We further show that this response is mediated by the PGRP-LC membrane receptor and downstream components of a noncanonical NF-κB signaling cascade. Activation of this signaling cascade triggers behavior changes. These data demonstrate that bitter-sensing neurons and immune cells share a common detection and signaling module to either trigger the production of antibacterial effectors or to modulate the behavior of flies that are in contact with bacteria. Because peptidoglycan detection doesn't mobilize the known gustatory receptors, it also demonstrates that taste perception is much more complex than anticipated.


Assuntos
Drosophila , Peptidoglicano , Animais , Feminino , Drosophila/genética , Peptidoglicano/farmacologia , Peptidoglicano/metabolismo , NF-kappa B , Cálcio , Bactérias/metabolismo , Neurônios/metabolismo
4.
Cell Mol Life Sci ; 77(21): 4289-4297, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32358623

RESUMO

Drosophila larvae need to adapt their metabolism to reach a critical body size to pupate. This process needs food resources and has to be tightly adjusted to control metamorphosis timing and adult size. Nutrients such as amino acids either directly present in the food or obtained via protein digestion play key regulatory roles in controlling metabolism and growth. Amino acids act especially on two organs, the fat body and the brain, to control larval growth, body size developmental timing and pupariation. The expression of specific amino acid transporters in fat body cells, and in the brain through specific neurons and glial cells is essential to activate downstream molecular signaling pathways in response to amino acid levels. In this review, we highlight some of these specific networks dependent on amino acid diet to control DILP levels, and by consequence larval metabolism and growth.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/crescimento & desenvolvimento , Animais , Drosophila/metabolismo , Hormônios/metabolismo , Larva/crescimento & desenvolvimento , Larva/metabolismo , Transdução de Sinais
5.
Elife ; 82019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31661076

RESUMO

When facing microbes, animals engage in behaviors that lower the impact of the infection. We previously demonstrated that internal sensing of bacterial peptidoglycan reduces Drosophila female oviposition via NF-κB pathway activation in some neurons (Kurz et al., 2017). Although we showed that the neuromodulator octopamine is implicated, the identity of the involved neurons, as well as the physiological mechanism blocking egg-laying, remained unknown. In this study, we identified few ventral nerve cord and brain octopaminergic neurons expressing an NF-κB pathway component. We functionally demonstrated that NF-κB pathway activation in the brain, but not in the ventral nerve cord octopaminergic neurons, triggers an egg-laying drop in response to infection. Furthermore, we demonstrated via calcium imaging that the activity of these neurons can be directly modulated by peptidoglycan and that these cells do not control other octopamine-dependent behaviors such as female receptivity. This study shows that by sensing peptidoglycan and hence activating NF-κB cascade, a couple of brain neurons modulate a specific octopamine-dependent behavior to adapt female physiology status to their infectious state.


Assuntos
Encéfalo/citologia , Drosophila/fisiologia , NF-kappa B/metabolismo , Neurônios/efeitos dos fármacos , Oviposição , Peptidoglicano/metabolismo , Animais , Drosophila/microbiologia , Feminino , Octopamina/metabolismo
7.
Cell Rep ; 24(12): 3156-3166.e4, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30231999

RESUMO

In Drosophila, ecdysone hormone levels determine the timing of larval development. Its production is regulated by the stereotypical rise in prothoracicotropic hormone (PTTH) levels. Additionally, ecdysone levels can also be modulated by nutrition (specifically by amino acids) through their action on Drosophila insulin-like peptides (Dilps). Moreover, in glia, amino-acid-sensitive production of Dilps regulates brain development. In this work, we describe the function of an SLC7 amino acid transporter, Sobremesa (Sbm). Larvae with reduced Sbm levels in glia remain in third instar for an additional 24 hr. These larvae show reduced brain growth with increased body size but do not show reduction in insulin signaling or production. Interestingly, Sbm downregulation in glia leads to reduced Ecdysone production and a surprising delay in the rise of PTTH levels. Our work highlights Sbm as a modulator of both brain development and the timing of larval development via an amino-acid-sensitive and Dilp-independent function of glia.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Encéfalo/crescimento & desenvolvimento , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Neuroglia/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Animais , Encéfalo/metabolismo , Drosophila melanogaster/metabolismo , Ecdisona/metabolismo , Hormônios de Inseto/metabolismo , Insulina/metabolismo
8.
Sleep ; 41(10)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30016498

RESUMO

Amino acid transporters are involved in functions reportedly linked to the sleep/wake cycle: neurotransmitter synthesis and recycling, the regulation of synaptic strength, protein synthesis, and energy metabolism. In addition, the existence of bidirectional relationships among extracellular content, transport systems, and sleep/wake states is receiving emerging support. Nevertheless, the connection between amino acid transport and sleep/wake regulation remains elusive. To address this question, we used Drosophila melanogaster and investigated the role of LAT1 (large neutral amino acid transporter 1) transporters. We show that the two Drosophila LAT1-like transporters: Juvenile hormone Inducible-21 and minidiscs (Mnd) are required in dopaminergic neurons for sleep/wake regulation. Down-regulating either gene in dopaminergic neurons resulted in higher daily sleep and longer sleep bout duration during the night, suggesting a defect in dopaminergic transmission. Since LAT1 transporters can mediate in mammals the uptake of L-DOPA, a precursor of dopamine, we assessed amino acid transport efficiency by L-DOPA feeding. We find that downregulation of JhI-21, but not Mnd, reduced the sensitivity to L-DOPA as measured by sleep loss. JhI-21 downregulation also attenuated the sleep loss induced by continuous activation of dopaminergic neurons. Since LAT1 transporters are known to regulate target of rapamycin (TOR) signaling, we investigated the role of this amino acid sensing pathway in dopaminergic neurons. Consistently, we report that TOR activity in dopaminergic neurons modulates sleep/wake states. Altogether, this study provides evidence that LAT1-mediated amino acid transport in dopaminergic neurons is playing a significant role in sleep/wake regulation and is providing several entry points to elucidate the role of nutrients such as amino acids in sleep/wake regulation.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Neurônios Dopaminérgicos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Sono/fisiologia , Animais , Transporte Biológico , Dopamina/metabolismo , Regulação para Baixo , Drosophila , Drosophila melanogaster/genética , Feminino , Levodopa , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
9.
Sci Rep ; 8(1): 1908, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29382949

RESUMO

Insulin is present all across the animal kingdom. Its proper release after feeding is of extraordinary importance for nutrient uptake, regulation of metabolism, and growth. We used Drosophila melanogaster to shed light on the processes linking dietary leucine intake to insulin secretion. The Drosophila genome encodes 8 insulin-like peptides ("Dilps"). Of these, Dilp2 is secreted after the ingestion of a leucine-containing diet. We previously demonstrated that Minidiscs, related to mammalian system-L transporters, acts as a leucine sensor within the Dilp2-secreting insulin-producing cells ("IPCs") of the brain. Here, we show that a second leucine transporter, JhI-21, of the same family is additionally necessary for proper leucine sensing in the IPCs. Using calcium imaging and ex-vivo cultured brains we show that knockdown of JhI-21 in IPCs causes malfunction of these cells: they are no longer able to sense dietary leucine or to release Dilp2 in a leucine dependent manner. JhI-21 knockdown in IPCs further causes systemic metabolic defects including defective sugar uptake and altered growth. Finally, we showed that JhI-21 and Minidiscs have no cumulative effect on Dilp2 release. Since system-L transporters are expressed by mammalian ß-cells our results could help to better understand the role of these proteins in insulin signaling.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Células Secretoras de Insulina/metabolismo , Larva/metabolismo , Leucina/metabolismo , Transporte Proteico/fisiologia , Animais , Encéfalo/metabolismo , Encéfalo/fisiologia , Insulina/metabolismo , Peptídeos/metabolismo , Transdução de Sinais/fisiologia
10.
Sci Rep ; 7(1): 14230, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-29079812

RESUMO

Microorganisms inhabiting fermenting fruit produce chemicals that elicit strong behavioral responses in flies. Depending on their ecological niche, individuals confer a positive or a negative valence to a chemical and, accordingly, they trigger either attractive or repulsive behaviors. We studied the case of bacterial short-chain fatty acids (SCFA) that trigger opposite behaviors in adult and larvae of Drosophila melanogaster. We determined that SCFA-attractive responses depend on two larval exclusive chemoreceptors, Or30a and Or94b. Of those SCFA, propionic acid improves larval survival in suboptimal rearing conditions and supports growth. Olfactory detection of propionic acid specifically is sufficient to trigger feeding behaviors, and this effect requires the correct activity of Or30a+ and Or94b+ olfactory sensory neurons. Additionally, we studied the case of the invasive pest Drosophila suzukii that lives on undamaged ripe fruit with less SCFA production. Contrary to D. melanogaster, D. suzukii larvae show reduced attraction towards propionic acid, which does not trigger feeding behavior in this invasive species. Our results demonstrate the relevance of propionic acid as an orexigenic signal in D. melanogaster larvae. Moreover, this study underlines that the changes on ecological niche are accompanied with alterations of olfactory preferences and vital olfactory driven behaviors.


Assuntos
Apetite/efeitos dos fármacos , Bactérias/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/fisiologia , Ácidos Graxos Voláteis/farmacologia , Larva/efeitos dos fármacos , Olfato/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Ácidos Graxos Voláteis/biossíntese , Comportamento Alimentar/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/fisiologia , Propionatos/farmacologia , Análise de Sobrevida
12.
Cell Rep ; 17(1): 137-148, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27681427

RESUMO

Dietary leucine has been suspected to play an important role in insulin release, a hormone that controls satiety and metabolism. The mechanism by which insulin-producing cells (IPCs) sense leucine and regulate insulin secretion is still poorly understood. In Drosophila, insulin-like peptides (DILP2 and DILP5) are produced by brain IPCs and are released in the hemolymph after leucine ingestion. Using Ca(2+)-imaging and ex vivo cultured larval brains, we demonstrate that IPCs can directly sense extracellular leucine levels via minidiscs (MND), a leucine transporter. MND knockdown in IPCs abolished leucine-dependent changes, including loss of DILP2 and DILP5 in IPC bodies, consistent with the idea that MND is necessary for leucine-dependent DILP release. This, in turn, leads to a strong increase in hemolymph sugar levels and reduced growth. GDH knockdown in IPCs also reduced leucine-dependent DILP release, suggesting that nutrient sensing is coupled to the glutamate dehydrogenase pathway.


Assuntos
Sistemas de Transporte de Aminoácidos/genética , Encéfalo/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Células Secretoras de Insulina/metabolismo , Insulinas/metabolismo , Leucina/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Animais , Encéfalo/citologia , Cálcio/metabolismo , Drosophila melanogaster/citologia , Regulação da Expressão Gênica , Glutamato Desidrogenase/genética , Glutamato Desidrogenase/metabolismo , Hemolinfa/metabolismo , Células Secretoras de Insulina/citologia , Insulinas/genética , Larva/citologia , Larva/metabolismo , Leucina/administração & dosagem , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transdução de Sinais
13.
Sci Rep ; 6: 19692, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26805723

RESUMO

Changes in synaptic physiology underlie neuronal network plasticity and behavioral phenomena, which are adjusted during development. The Drosophila larval glutamatergic neuromuscular junction (NMJ) represents a powerful synaptic model to investigate factors impacting these processes. Amino acids such as glutamate have been shown to regulate Drosophila NMJ physiology by modulating the clustering of postsynaptic glutamate receptors and thereby regulating the strength of signal transmission from the motor neuron to the muscle cell. To identify amino acid transporters impacting glutmatergic signal transmission, we used Evolutionary Rate Covariation (ERC), a recently developed bioinformatic tool. Our screen identified ten proteins co-evolving with NMJ glutamate receptors. We selected one candidate transporter, the SLC7 (Solute Carrier) transporter family member JhI-21 (Juvenile hormone Inducible-21), which is expressed in Drosophila larval motor neurons. We show that JhI-21 suppresses postsynaptic muscle glutamate receptor abundance, and that JhI-21 expression in motor neurons regulates larval crawling behavior in a developmental stage-specific manner.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Atividade Motora , Junção Neuromuscular/fisiologia , Receptores de Glutamato/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Animais , Evolução Biológica , Proteínas de Drosophila/genética , Potenciais Pós-Sinápticos Excitadores , Larva , Neurônios Motores/metabolismo , Mutação , Terminações Pré-Sinápticas/metabolismo , Transdução de Sinais , Transmissão Sináptica
14.
J Neurosci ; 34(33): 10884-91, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25122890

RESUMO

Salt is a fundamental nutrient that is required for many physiological processes, including electrolyte homeostasis and neuronal activity. In mammals and Drosophila, the detection of NaCl induces two different behaviors: low-salt concentrations provide an attractive stimulus, whereas high-salt concentrations are avoided. We identified the gene called serrano (sano) as being expressed in the sensory organs of Drosophila larvae. A transgenic reporter line showed that sano was coexpressed with Gr66a in a subset of gustatory neurons in the terminal organ of third-instar larvae. The disruption of sano gene expression in gustatory neurons led to the specific loss of high-salt concentration avoidance in larvae, whereas the detection of other attractive or aversive substances was unaffected. Moreover, using a cellular marker sensitive to calcium levels, Sano function was shown to be required for neuronal activity in response to high-salt concentrations. In these neurons, the loss of the DEG/ENaC channel PPK19 function also eliminated the cellular response to high-salt concentrations. Our study revealed that PPK19 and Sano are required in the neurons of the larval gustatory organs for the detection of high-salt concentrations.


Assuntos
Comportamento Animal/fisiologia , Neurônios/fisiologia , Cloreto de Sódio , Percepção Gustatória/fisiologia , Paladar/fisiologia , Animais , Cálcio/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Larva/fisiologia
15.
PLoS One ; 2(7): e661, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17710124

RESUMO

Sexual behavior requires animals to distinguish between the sexes and to respond appropriately to each of them. In Drosophila melanogaster, as in many insects, cuticular hydrocarbons are thought to be involved in sex recognition and in mating behavior, but there is no direct neuronal evidence of their pheromonal effect. Using behavioral and electrophysiological measures of responses to natural and synthetic compounds, we show that Z-7-tricosene, a Drosophila male cuticular hydrocarbon, acts as a sex pheromone and inhibits male-male courtship. These data provide the first direct demonstration that an insect cuticular hydrocarbon is detected as a sex pheromone. Intriguingly, we show that a particular type of gustatory neurons of the labial palps respond both to Z-7-tricosene and to bitter stimuli. Cross-adaptation between Z-7-tricosene and bitter stimuli further indicates that these two very different substances are processed by the same neural pathways. Furthermore, the two substances induced similar behavioral responses both in courtship and feeding tests. We conclude that the inhibitory pheromone tastes bitter to the fly.


Assuntos
Drosophila melanogaster/fisiologia , Atrativos Sexuais/metabolismo , Paladar/fisiologia , Animais , Cafeína/farmacologia , Drosophila melanogaster/genética , Genótipo , Homossexualidade Masculina , Iluminação , Masculino , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Caracteres Sexuais , Comportamento Sexual Animal/efeitos dos fármacos , Comportamento Sexual Animal/fisiologia , Paladar/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA