Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 88(3): 1674-81, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26674535

RESUMO

The complexity of synthetic and natural polymers used in industrial and medical applications is expanding; thus, it becomes increasingly important to improve and develop methods for their molecular characterization. Free-solution capillary electrophoresis is a robust technique for the separation and characterization of both natural and synthetic complex charged polymers. In the case of polyelectrolytes, free-solution capillary electrophoresis is in the "critical conditions" (CE-CC): it allows their separation by factors other than molar mass for molar masses typically higher than 20000 g/mol. This method is thus complementary to size-exclusion chromatography (SEC). SEC is widely used to determine molar mass distributions and their dispersities. Utilizing CE-CC, an analogous calculation of dispersity based on the distributions of electrophoretic mobilities was derived and the heterogeneity of composition or branching in different polysaccharides or synthetic polymers was obtained in a number of experimental cases. Calculations are based on a ratio of moments and could therefore be compared to simulations of polymerization processes, in analogy to the work performed on molar mass distributions. Among four possible types of dispersity, the most precise values were obtained with the calculation analogous with the dispersity of molar mass distribution Mw/Mn. In addition, the dispersity value allows conclusions based on a single value: the closer the dispersity is to 1, the more homogeneous the polymer is in terms of composition or branching. This approach allows the analysis of dispersity of important molecular attributes of polymers other than molar mass and aims at improving the overall molecular characterization of both synthetic and natural polymers. The dispersity can also be monitored online while performing a chemical reaction within the CE instrument.

2.
Macromol Biosci ; 15(12): 1724-34, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26257305

RESUMO

Poly(acrylic acid-co-sodium acrylate) (PNaA) is a pH-responsive polymer with potential in anticancer drug delivery. The cytotoxicity and intracellular effects of 3-arm star, hyperbranched and linear PNaA were investigated with L1210 progenitor leukemia cells and L6 myoblast cells. Free solution capillary electrophoresis demonstrated interactions of PNaA with serum proteins. In a 72 h MTT assay most PNaAs exhibited a IC50 between 7 and 14 mmol L(-1), showing that precipitation may be a sufficient purification for PNaA dilute solutions. Dialyzed 3-arm star and hyperbranched PNaA caused an increase in L6 cell viability, challenging the suitability of MTT as cytotoxicity assay for PNaA. Fluorescent confocal microscopy revealed merging of cellular lipids after exposure to PNaA, likely caused by serum starvation.


Assuntos
Resinas Acrílicas/química , Proteínas Sanguíneas/química , Mioblastos Esqueléticos/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Camundongos
3.
J Chromatogr A ; 1372C: 187-195, 2014 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-25465016

RESUMO

Block copolymers enable combining properties of different polymers; double hydrophilic block copolymers are innovative examples. Size-exclusion chromatography (SEC or GPC) has a quasi-monopoly in separation-based characterization methods for polymers, including block copolymers. However, in terms of purity determination (unintended homopolymers present in the copolymers), SEC resolution proves insufficient except for the extreme compositions for which the second block is much larger than the first one. The free solution capillary electrophoresis (capillary zone electrophoresis) technique does not separate charged homopolymers by their molar mass and we thus named the corresponding method capillary electrophoresis in the critical condition (CE-CC). CE-CC provides a means to assess the purity of poly(acrylic acid-b-acrylamide) - P(AA-b-AM) - copolymers, as well as of the more challenging cationic poly(acrylamido-N-propyltrimethylammonium chloride-b-N-isopropylacrylamide)-P(APTAC-b-NIPAM). In addition it can identify that a block copolymer has been produced. It is to be noted that P(APTAC-b-NIPAM) block copolymers cannot be eluted in SEC due to their exceptional ability to adsorb onto surfaces, while some information is obtained from CE-CC. Both possible parent homopolymers can be detected and their quantity estimated in a single injection by CE-CC. In both cases, one of the parent homopolymers is neutral and comes with the electro-osmotic flow. If the electro-osmotic flow is weak (conditions used for the cationic copolymer) then pressure assisted CE-CC is used to detect this homopolymer.

4.
Anal Bioanal Chem ; 405(28): 9009-20, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23732867

RESUMO

Branching was detected in polyacrylates synthesised through radical polymerization via solution-state NMR, while inconsistencies have been reported for the determination of the molar mass of hydrophilic polyacrylates using aqueous-phase and organic-phase size-exclusion chromatography. In this work, poly(sodium acrylate)s, PNaAs, of various topologies were separated for the first time using free-solution capillary electrophoresis (CE). Free-solution CE does not separate the PNaAs by their molar mass, similarly to separations by liquid chromatography in the critical conditions, rather by different topologies (linear, star branched, and hyperbranched). The electrophoretic mobility of PNaAs increases as the degree of branching decreases. Separation is shown to be not only by the topology but also by the end groups as expected for a separation in the critical conditions: replacing a relatively bulky nitroxide end group with hydrogen atom yielded a higher electrophoretic mobility. This novel method, capillary electrophoresis in the critical conditions enabled, for the first time, the separation of hydrophilic polyacrylates according to their topology (branching) and their chain ends. This will allow meaningful and accurate characterization of their branched topologies as well as molar masses and progress in for advanced applications such as drug delivery or flocculation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA