RESUMO
The current study evaluates antibiotic susceptibility and Extended Spectrum ß-Lactamase (ESBL) production of 557 Escherichia coli isolates obtained from clean catch midstream urine samples using VITEK 2 compact automated microbial identification system. Different classes of drugs were used to determine the Minimum inhibitory concentration (MIC). In our study, 50.45% of isolates were ESBL producers. There is a higher incidence of UTI in females (77.4%) than in males (22.6%). The isolates reveal a high percentage of resistance to antibiotics like nalidixic acid (89.59%), ampicillin (75.76%), ticarcillin (73.43%), cefalotin (67.68%), cefixime (65.17%), ciprofloxacin (58.35%) and ceftriaxone (56.37%). An increased susceptibility pattern was observed for the isolates against drug classes like fosfomycin (98.03%) and nitrofurantoin (91.02%). Among the isolates, 395 (70.91%) were classified as Multidrug-resistant organisms based on the resistance pattern observed against three or more classes of antibiotics. One of the isolates resistant to fluoroquinolones, penicillins, penicillins along with ß-lactamase inhibitor, aminoglycosides, third-generation cephalosporins and carbapenems was subjected to Whole genome sequencing (WGS). WGS data revealed the isolate to be a high-risk clone ST410, which contains antimicrobial-resistance genes (blaTEM-1B, blaCTX-M-15, blaNDM-5, aac(3)-IId, armA, gyrA(p.S83L), gyrA(p.D87N)) conferring resistance to ß-lactam, cephalosporins, carbapenem, aminoglycoside and fluoroquinolone class of antibiotics. The core genome MLST was carried out using BacWGSTdb to assess the global phylogenetic relationship of the genome sequence. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-023-01125-1.