Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
iScience ; 24(3): 102197, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33733063

RESUMO

Matrin3 (MATR3) is a nuclear RNA/DNA-binding protein that plays pleiotropic roles in gene expression regulation by directly stabilizing target RNAs and supporting the activity of transcription factors by modulating chromatin architecture. MATR3 is involved in the differentiation of neural cells, and, here, we elucidate its critical functions in regulating pluripotent circuits in human induced pluripotent stem cells (hiPSCs). MATR3 downregulation affects hiPSCs' differentiation potential by altering key pluripotency regulators' expression levels, including OCT4, NANOG, and LIN28A by pleiotropic mechanisms. MATR3 binds to the OCT4 and YTHDF1 promoters favoring their expression. YTHDF1, in turn, binds the m6A-modified OCT4 mRNA. Furthermore, MATR3 is recruited on ribosomes and controls pluripotency regulating the translation of specific transcripts, including NANOG and LIN28A, by direct binding and favoring their stabilization. These results show that MATR3 orchestrates the pluripotency circuitry by regulating the transcription, translational efficiency, and epitranscriptome of specific transcripts.

2.
Nat Cell Biol ; 22(10): 1239-1251, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32958857

RESUMO

The contribution of ribosome heterogeneity and ribosome-associated proteins to the molecular control of proteomes in health and disease remains unclear. Here, we demonstrate that survival motor neuron (SMN) protein-the loss of which causes the neuromuscular disease spinal muscular atrophy (SMA)-binds to ribosomes and that this interaction is tissue-dependent. SMN-primed ribosomes are preferentially positioned within the first five codons of a set of mRNAs that are enriched for translational enhancer sequences in the 5' untranslated region (UTR) and rare codons at the beginning of their coding sequence. These SMN-specific mRNAs are associated with neurogenesis, lipid metabolism, ubiquitination, chromatin regulation and translation. Loss of SMN induces ribosome depletion, especially at the beginning of the coding sequence of SMN-specific mRNAs, leading to impairment of proteins that are involved in motor neuron function and stability, including acetylcholinesterase. Thus, SMN plays a crucial role in the regulation of ribosome fluxes along mRNAs encoding proteins that are relevant to SMA pathogenesis.


Assuntos
Neurônios Motores/patologia , Atrofia Muscular Espinal/patologia , Biossíntese de Proteínas , Proteoma/análise , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica , Camundongos , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , RNA Mensageiro/genética , Ribossomos/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA