Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Physiol Plant ; 175(2): e13897, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36960640

RESUMO

Iron deficiency is a major nutritional stress that severely impacts crop productivity worldwide. However, molecular intricacies and subsequent physiological and metabolic changes in response to Fe starvation, especially in leguminous crops like chickpea, remain elusive. In the present study, we investigated physiological, transcriptional, and metabolic reprogramming in two chickpea genotypes (H6013 and L4958) with contrasting seed iron concentrations upon Fe deficiency. Our findings revealed that iron starvation affected growth and physiological parameters of both chickpea genotypes. Comparative transcriptome analysis led to the identification of differentially expressed genes between the genotypes related to strategy I uptake, metal ions transporters, reactive oxygen species-associated genes, transcription factors, and protein kinases that could mitigate Fe deficiency. Our gene correlation network discovered several putative candidate genes like CIPK25, CKX3, WRKY50, NAC29, MYB4, and PAP18, which could facilitate the investigation of the molecular rationale underlying Fe tolerance in chickpea. Furthermore, the metabolite analysis also illustrated the differential accumulation of organic acids, amino acids and other metabolites associated with Fe mobilization in chickpea genotypes. Overall, our study demonstrated the comparative transcriptional dynamics upon Fe starvation. The outcomes of the current endeavor will enable the development of Fe deficiency tolerant chickpea cultivars.


Assuntos
Cicer , Transcriptoma , Cicer/genética , Perfilação da Expressão Gênica , Genótipo , Ferro/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Biomed Res Int ; 2022: 4615079, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36506916

RESUMO

In plants, light quality plays significant roles in photomorphogenesis and photosynthesis. Efficient in vitro plant propagation techniques involve tailoring of various environmental cues and culture media according to the plant species. Plant tissue culture consists of several applications in scientific research, agriculture, biotechnology, and commercial industrial purposes. Utilization of light to enhance the quality of the in vitro raised plants have been evidenced by numerous researchers in plant tissue culture. The advent of light-emitting diode- (LED-) based artificial lighting systems in plant tissue culture for micropropagation has enhanced callus induction, shoot and root organogenesis, and acclimatization of in vitro propagated plants. Plants tend to perceive the light spectra present in the photosynthetically active region (PAR) ranging from 400 to 700 nm; this includes blue and red light wavelengths. Although the influence of spectral quality is being investigated in diverse plant species, particularly, its importance in in vitro propagated horticultural crops is gaining notable interest among researchers. In recent days, the application of LEDs provides better amenability according to the plant species of interest for efficient plant regeneration. Considering the growing necessity and emerging applications of LED supplemental lights for propagation of plants in in vitro, the present review summarizes the outcomes of various research studies dealing with LEDs in plant tissue culture. Moreover, the present endeavor has provided a comprehensive overview on the effects of LEDs in the morphogenesis of plants cultured in vitro.


Assuntos
Luz , Fotossíntese , Biomassa , Produtos Agrícolas
4.
Int J Mol Sci ; 22(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34830464

RESUMO

The genus Fragaria encompass fruits with diverse colors influenced by the distribution and accumulation of anthocyanin. Particularly, the fruit colors of strawberries with different ploidy levels are determined by expression and natural variations in the vital structural and regulatory genes involved in the anthocyanin pathway. Among the regulatory genes, MYB10 transcription factor is crucial for the expression of structural genes in the anthocyanin pathway. In the present study, we performed a genome wide investigation of MYB10 in the diploid and octoploid Fragaria species. Further, we identified seven quantitative trait loci (QTLs) associated with fruit color in octoploid strawberry. In addition, we predicted 20 candidate genes primarily influencing the fruit color based on the QTL results and transcriptome analysis of fruit skin and flesh tissues of light pink, red, and dark red strawberries. Moreover, the computational and transcriptome analysis of MYB10 in octoploid strawberry suggests that the difference in fruit colors could be predominantly influenced by the expression of MYB10 from the F. iinumae subgenome. The outcomes of the present endeavor will provide a platform for the understanding and tailoring of anthocyanin pathway in strawberry for the production of fruits with aesthetic colors.


Assuntos
Fragaria/genética , Proteínas de Plantas/genética , Locos de Características Quantitativas/genética , Fatores de Transcrição/genética , Antocianinas/genética , Cor , Fragaria/crescimento & desenvolvimento , Frutas/genética , Frutas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Estudo de Associação Genômica Ampla , Poliploidia
5.
Front Plant Sci ; 12: 696229, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335662

RESUMO

Strawberry is an allo-octoploid crop with high genome heterozygosity and complexity, which hinders the sequencing and the assembly of the genome. However, in the present study, we have generated a chromosome level assembly of octoploid strawberry sourced from a highly homozygous inbred line 'Wongyo 3115', using long- and short-read sequencing technologies. The assembly of 'Wongyo 3115' produced 805.6 Mb of the genome with 323 contigs scaffolded into 208 scaffolds with an N50 of 27.3 Mb after further gap filling. The whole genome annotation resulted in 151,892 genes with a gene density of 188.52 (genes/Mb) and validation of a genome, using BUSCO analysis resulted in 94.10% complete BUSCOs. Firmness is one of the vital traits in strawberry, which facilitate the postharvest shelf-life qualities. The molecular and genetic mechanisms that contribute the firmness in strawberry remain unclear. We have constructed a high-density genetic map based on the 'Wongyo 3115' reference genome to identify loci associated with firmness in the present study. For the quantitative trait locus (QTL) identification, the 'BS F2' populations developed from two inbred lines were genotyped, using an Axiom 35K strawberry chip, and marker positions were analyzed based on the 'Wongyo 3115' genome. Genetic maps were constructed with 1,049 bin markers, spanning the 3,861 cM. Using firmness data of 'BS F2' obtained from 2 consecutive years, five QTLs were identified on chromosomes 3-3, 5-1, 6-1, and 6-4. Furthermore, we predicted the candidate genes associated with firmness in strawberries by utilizing transcriptome data and QTL information. Overall, we present the chromosome-level assembly and annotation of a homozygous octoploid strawberry inbred line and a linkage map constructed to identify QTLs associated with fruit firmness.

6.
Front Plant Sci ; 12: 671286, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149771

RESUMO

Cruciferous plants in the order Brassicales defend themselves from herbivory using glucosinolates: sulfur-containing pro-toxic metabolites that are activated by hydrolysis to form compounds, such as isothiocyanates, which are toxic to insects and other organisms. Some herbivores are known to circumvent glucosinolate activation with glucosinolate sulfatases (GSSs), enzymes that convert glucosinolates into inactive desulfoglucosinolates. This strategy is a major glucosinolate detoxification pathway in a phloem-feeding insect, the silverleaf whitefly Bemisia tabaci, a serious agricultural pest of cruciferous vegetables. In this study, we identified and characterized an enzyme responsible for glucosinolate desulfation in the globally distributed B. tabaci species MEAM1. In in vitro assays, this sulfatase showed a clear preference for indolic glucosinolates compared with aliphatic glucosinolates, consistent with the greater representation of desulfated indolic glucosinolates in honeydew. B. tabaci might use this detoxification strategy specifically against indolic glucosinolates since plants may preferentially deploy indolic glucosinolates against phloem-feeding insects. In vivo silencing of the expression of the B. tabaci GSS gene via RNA interference led to lower levels of desulfoglucosinolates in honeydew. Our findings expand the knowledge on the biochemistry of glucosinolate detoxification in phloem-feeding insects and suggest how detoxification pathways might facilitate plant colonization in a generalist herbivore.

7.
Biomed Res Int ; 2021: 6673010, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33816626

RESUMO

Powdery mildew (PM) is a common fungal disease infecting pepper plants worldwide. Molecular breeding of pepper cultivars with powdery mildew resistance is desirable for the economic improvement of pepper cultivation. In the present study, 188 F5 population derived from AR1 (PM resistant) and TF68 (PM sensitive) parents were subjected to high-throughput genotyping by sequencing (GBS) for the identification of single nucleotide polymorphism (SNP) markers. Further, the identified SNP markers were utilized for the construction of genetic linkage map and QTL analysis. Overall read mapping percentage of 87.29% was achieved in this study with the total length of mapped region ranging from 2,956,730 to 25,537,525 bp. A total of 41,111 polymorphic SNPs were identified, and a final of 1,841 SNPs were filtered for the construction of a linkage map. A total of 12 linkage groups were constructed corresponding to each chromosome with 1,308 SNP markers with the map length of 2506.8 cM. Further, two QTLs such as Pm-2.1 and Pm-5.1 were identified in chromosomes 2 and 5, respectively, for the PM resistance. Overall, the outcomes of the present endeavor can be utilized for the marker-assisted selection of pepper with powdery mildew-resistant trait.


Assuntos
Capsicum/genética , Mapeamento Cromossômico , Resistência à Doença/genética , Genótipo , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Capsicum/microbiologia , Doenças das Plantas/microbiologia
8.
Molecules ; 25(22)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187365

RESUMO

Watermelon (Citrulus lantus) is an important horticultural crop which belongs to the Curcubitaceae family. The nutraceutical potential of watermelon has been illustrated by several researchers, which makes it a better choice of functional food. Watermelon has been used to treat various ailments, such as cardio-vascular diseases, aging related ailments, obesity, diabetes, ulcers, and various types of cancers. The medicinal properties of watermelon are attributed by the presence of important phytochemicals with pharmaceutical values such as lycopene, citrulline, and other polyphenolic compounds. Watermelon acts as vital source of l-citrulline, a neutral-alpha amino acid which is the precursor of l-arginine, an essential amino acid necessary for protein synthesis. Supplementation of l-citrulline and lycopene displayed numerous health benefits in in vitro and in vivo studies. Similarly, the dietary intake of watermelon has proven benefits as functional food in humans for weight management. Apart from the fruits, the extracts prepared from the seeds, sprouts, and leaves also evidenced medicinal properties. The present review provides a comprehensive overview of benefits of watermelon for the treatment of various ailments.


Assuntos
Citrullus/química , Suplementos Nutricionais , Compostos Fitoquímicos/química , Extratos Vegetais/farmacologia , Aminoácidos/química , Animais , Antioxidantes/química , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/prevenção & controle , Citrulina/química , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/prevenção & controle , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/prevenção & controle , Dieta , Frutas/química , Alimento Funcional , Horticultura , Humanos , Licopeno/química , Óxido Nítrico/metabolismo , Obesidade/tratamento farmacológico , Obesidade/prevenção & controle , Plantas Medicinais/metabolismo
9.
Front Plant Sci ; 11: 607007, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33552100

RESUMO

The current study has determined the effect of red and blue lights on the enhancement of growth, antioxidant property, phytochemical contents, and expression of proteins in Scrophularia kakudensis. In vitro-grown shoot tip explants of S. kakudensis were cultured on the plant growth regulator-free Murashige and Skoog (MS) medium and cultured under the conventional cool white fluorescent lamp (control), blue light-emitting diodes (LED) light, or red LED light. After 4 weeks, growth, stomatal ultrastructure, total phenols and flavonoids, activities of antioxidant enzymes, and protein expressions were determined. Interestingly, blue or red LED treatment increased the shoot length, shoot diameter, root length, and biomass on comparison with the control. In addition, the LED treatments enhanced the contents of phytochemicals in the extracts. The red LED treatment significantly elicited the accumulation of flavonoids in comparison with the control. In accordance with the secondary metabolites, the LED treatments modulated the activities of antioxidant enzymes. Moreover, the proteomic insights using two-dimensional gel electrophoresis system revealed the proteins involved in transcription and translation, carbohydrate mechanism, post-translational modification, and stress responses. Taken together, the incorporation of blue or red LED during in vitro propagation of S. kakudensis can be a beneficial way to increase the plant quality and medicinal values of S. kakudensis.

10.
Hortic Res ; 6: 120, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31700647

RESUMO

The sequencing of radish genome aids in the better understanding and tailoring of traits associated with economic importance. In order to accelerate the genomics assisted breeding and genetic selection, transcriptomes of 33 radish inbred lines with diverse traits were sequenced for the development of single nucleotide polymorphic (SNP) markers. The sequence reads ranged from 2,560,543,741 bp to 20,039,688,139 bp with the GC (%) of 47.80-49.34 and phred quality score (Q30) of 96.47-97.54%. A total of 4951 polymorphic SNPs were identified among the accessions after stringent filtering and 298 SNPs with efficient marker assisted backcross breeding (MAB) markers were generated from the polymorphic SNPs. Further, functional annotations of SNPs revealed the effects and importance of the SNPs identified in the flowering process. The SNPs were predominantly associated with the four major flowering related transcription factors such as MYB, MADS box (AG), AP2/EREB, and bHLH. In addition, SNPs in the vital flowering integrator gene (FT) and floral repressors (EMBRYONIC FLOWER 1, 2, and FRIGIDA) were identified among the radish inbred lines. Further, 50 SNPs were randomly selected from 298 SNPs and validated using Kompetitive Allele Specific PCR genotyping system (KASP) in 102 radish inbred lines. The homozygosity of the inbred lines varied from 56 to 96% and the phylogenetic analysis resulted in the clustering of inbred lines into three subgroups. Taken together, the SNP markers identified in the present study can be utilized for the discrimination, seed purity test, and adjusting parental combinations for breeding in radish.

11.
Plants (Basel) ; 8(9)2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31461994

RESUMO

Silicon (Si), the second most predominant element in the earth crust consists of numerous benefits to plant. Beneficial effect of Si has been apparently visible under both abiotic and biotic stress conditions in plants. Supplementation of Si improved physiology and yield on several important agricultural and horticultural crops. Salinity is one of the major abiotic stresses that affect growth and yield. The presence of high concentration of salt in growing medium causes oxidative, osmotic, and ionic stresses to plants. In extreme conditions salinity affects soil, ground water, and limits agricultural production. Si ameliorates salt stress in several plants. The Si mediated stress mitigation involves various regulatory mechanisms such as photosynthesis, detoxification of harmful reactive oxygen species using antioxidant and non-antioxidants, and proper nutrient management. In the present review, Si mediated alleviation of salinity stress in plants through the regulation of photosynthesis, root developmental changes, redox homeostasis equilibrium, and regulation of nutrients have been dealt in detail.

12.
Nutrients ; 11(2)2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30769862

RESUMO

Raphanus sativus (Radish) belongs to the Brassicaceae family and is a widely consumed root vegetable all around the world. The nutritional and medicinal values of radishes have been proven by several researches. Extracts prepared from the aerial and underground parts of radishes have been used in the treatment of stomach disorders, urinary infections, hepatic inflammation, cardiac disorders and ulcers in folk medicine since the ancient times. The pharmaceutical potential of radishes is attributed to the presence of its beneficial secondary metabolites, such as glucosinolates, polyphenols and isothiocyanates. The present review has focused on the impact of radish extract administration under pathological complications, such as cancer, diabetes, hepatic inflammation and oxidative stress. In addition, a comprehensive view of molecular mechanism behind the regulation of molecular drug targets associated with different types of cancers and diabetes by the bioactive compounds present in the radish extracts have been discussed in detail.


Assuntos
Suplementos Nutricionais , Extratos Vegetais/farmacologia , Raphanus/química , Humanos , Extratos Vegetais/química , Raízes de Plantas/química
13.
Biomed Res Int ; 2018: 5646213, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29546063

RESUMO

Pepper is an economically important horticultural plant that has been widely used for its pungency and spicy taste in worldwide cuisines. Therefore, the domestication of pepper has been carried out since antiquity. Owing to meet the growing demand for pepper with high quality, organoleptic property, nutraceutical contents, and disease tolerance, genomics assisted breeding techniques can be incorporated to develop novel pepper varieties with desired traits. The application of next-generation sequencing (NGS) approaches has reformed the plant breeding technology especially in the area of molecular marker assisted breeding. The availability of genomic information aids in the deeper understanding of several molecular mechanisms behind the vital physiological processes. In addition, the NGS methods facilitate the genome-wide discovery of DNA based markers linked to key genes involved in important biological phenomenon. Among the molecular markers, single nucleotide polymorphism (SNP) indulges various benefits in comparison with other existing DNA based markers. The present review concentrates on the impact of NGS approaches in the discovery of useful SNP markers associated with pungency and disease resistance in pepper. The information provided in the current endeavor can be utilized for the betterment of pepper breeding in future.


Assuntos
Capsicum/genética , Resistência à Doença/genética , Genoma de Planta/genética , Sequenciamento de Nucleotídeos em Larga Escala , Mapeamento Cromossômico , Estudos de Associação Genética , Genômica , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único/genética
14.
Sci Rep ; 8(1): 5188, 2018 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-29581444

RESUMO

The present study deals with genome wide identification of single-nucleotide polymorphism (SNP) markers related to powdery mildew (PM) resistance in two pepper varieties. Capsicum baccatum (PRH1- a PM resistant line) and Capsicum annuum (Saengryeg- a PM susceptible line), were resequenced to develop SNP markers. A total of 6,213,009 and 6,840,889 SNPs for PRH1 and Saengryeg respectively have been discovered. Among the SNPs, majority were classified as homozygous type SNPs, particularly in the resistant line. Moreover, the SNPs were differentially distributed among the chromosomes in both the resistant and susceptible lines. In total, 4,887,031 polymorphic SNP loci were identified between the two lines and 306,871 high-resolution melting (HRM) marker primer sets were designed. In order to understand the SNPs associated with the vital genes involved in diseases resistance and stress associated processes, chromosome-wise gene ontology analysis was performed. The results revealed the occurrence that SNPs related to diseases resistance genes were predominantly distributed in chromosome 4. In addition, 6281 SNPs associated with 46 resistance genes were identified. Among the lines, PRH1 consisted of maximum number of polymorphic SNPs related to NBS-LRR genes. The SNP markers were validated using HRM assay in 45 F4 populations and correlated with the phenotypic disease index.


Assuntos
Ascomicetos/genética , Capsicum/genética , Doenças das Plantas/genética , Sequenciamento Completo do Genoma , Ascomicetos/patogenicidade , Capsicum/microbiologia , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Resistência à Doença/genética , Genoma de Planta/genética , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
15.
Front Plant Sci ; 8: 1346, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28824681

RESUMO

Silicon (Si), the quasi-essential element occurs as the second most abundant element in the earth's crust. Biological importance of Si in plant kingdom has become inevitable particularly under stressed environment. In general, plants are classified as high, medium, and low silicon accumulators based on the ability of roots to absorb Si. The uptake of Si directly influence the positive effects attributed to the plant but Si supplementation proves to mitigate stress and recover plant growth even in low accumulating plants like tomato. The application of Si in soil as well as soil-less cultivation systems have resulted in the enhancement of quantitative and qualitative traits of plants even under stressed environment. Silicon possesses several mechanisms to regulate the physiological, biochemical, and antioxidant metabolism in plants to combat abiotic and biotic stresses. Nevertheless, very few reports are available on the aspect of Si-mediated molecular regulation of genes with potential role in stress tolerance. The recent advancements in the era of genomics and transcriptomics have opened an avenue for the determination of molecular rationale associated with the Si amendment to the stress alleviation in plants. Therefore, the present endeavor has attempted to describe the recent discoveries related to the regulation of vital genes involved in photosynthesis, transcription regulation, defense, water transport, polyamine synthesis, and housekeeping genes during abiotic and biotic stress alleviation by Si. Furthermore, an overview of Si-mediated modulation of multiple genes involved in stress response pathways such as phenylpropanoid pathway, jasmonic acid pathway, ABA-dependent or independent regulatory pathway have been discussed in this review.

16.
Int J Mol Sci ; 18(8)2017 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-28805727

RESUMO

Beneficial effects of silicon (Si) on growth and development have been witnessed in several plants. Nevertheless, studies on roses are merely reported. Therefore, the present investigation was carried out to illustrate the impact of Si on photosynthesis, antioxidant defense and leaf proteome of rose under salinity stress. In vitro-grown, acclimatized Rosa hybrida 'Rock Fire' were hydroponically treated with four treatments, such as control, Si (1.8 mM), NaCl (50 mM), and Si+NaCl. After 15 days, the consequences of salinity stress and the response of Si addition were analyzed. Scorching of leaf edges and stomatal damages occurred due to salt stress was ameliorated under Si supplementation. Similarly, reduction of gas exchange, photosynthetic pigments, higher lipid peroxidation rate, and accumulation of reactive oxygen species under salinity stress were mitigated in Si treatment. Lesser oxidative stress observed was correlated with the enhanced activity and expression of antioxidant enzymes, such as superoxide dismutase, catalase, and ascorbate peroxidase in Si+NaCl treatment. Importantly, sodium transportation was synergistically restricted with the stimulated counter-uptake of potassium in Si+NaCl treatment. Furthermore, two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) results showed that out of 40 identified proteins, on comparison with control 34 proteins were down-accumulated and six proteins were up-accumulated due to salinity stress. Meanwhile, addition of Si with NaCl treatment enhanced the abundance of 30 proteins and downregulated five proteins. Differentially-expressed proteins were functionally classified into six groups, such as photosynthesis (22%), carbohydrate/energy metabolism (20%), transcription/translation (20%), stress/redox homeostasis (12%), ion binding (13%), and ubiquitination (8%). Hence, the findings reported in this work could facilitate a deeper understanding on potential mechanism(s) adapted by rose due to the exogenous Si supplementation during the salinity stress.


Assuntos
Hidroponia/métodos , Folhas de Planta/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Rosa/efeitos dos fármacos , Tolerância ao Sal/efeitos dos fármacos , Silício/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Folhas de Planta/fisiologia , Proteômica , Rosa/fisiologia , Salinidade , Silício/administração & dosagem
17.
Front Plant Sci ; 8: 738, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28533793

RESUMO

Hyperhydricity is one of the major problems hindering in vitro propagation of Dianthus caryophyllus L. Silicon (Si) is a well-known beneficial element renowned for its stress amelioration properties in plants. This study has demonstrated the physiological and molecular mechanism behind the Si-mediated recovery from hyperhydricity in D. caryophyllus L. 'Green Beauty'. Four weeks old hyperhydric shoots obtained from temporary immersion system were cultured on the Murashige and Skoog medium supplemented with 0 (control), 1.8 mM, or 3.6 mM of potassium silicate (K2SiO3). After 2 weeks of culture, we observed only 20% of hyperhydric shoots were recovered in control. On the other hand hyperhydricity, shoot recovery percentage in 1.8 mM and 3.6 mM of Si were 44% and 36%, respectively. Shoots in control possessed higher lipid peroxidation rate compared to the Si treatments. Similarly, damaged stomata were detected in the control, while Si treatments restored the normal stomatal development. Expressions of superoxide dismutase, guaiacol peroxidase, and catalase varied between the control and Si treatments. Furthermore, a proteomic analysis showed that as compared with the control Si up-regulated 17 and 10 protein spots in abundance at 1.8 and 3.6 mM of Si, respectively. In comparison to the 3.6 mM, 1.8 mM of Si treatment up-regulated 19 proteins and down-regulated 7 proteins. Identified proteins were categorized into six groups according to their biological roles such as ribosomal binding, oxido-reduction, hormone/cell signaling, metal/ion binding, defense, and photosynthesis. The proteomic results revealed that Si actively involved in the various metabolisms to accelerate the recovery of the shoots from hyperhydricity. Thus, the outcomes of this study can be utilized for addressing the molecular insight of hyperhydricity and its recovery mechanism by the supplementation of Si. Therefore, we conclude that active involvement of Si in the regulation and signaling process of proteins at 1.8 mM concentration could be efficient to trigger the reclamation process of hyperhydric carnation shoots.

18.
Biomed Res Int ; 2016: 3076357, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27088085

RESUMO

Silicon- (Si-) induced salinity stress resistance was demonstrated at physiological and proteomic levels in Capsicum annuum for the first time. Seedlings of C. annuum were hydroponically treated with NaCl (50 mM) with or without Si (1.8 mM) for 15 days. The results illustrated that saline conditions significantly reduced plant growth and biomass and photosynthetic parameters and increased the electrolyte leakage potential, lipid peroxidation, and hydrogen peroxide level. However, supplementation of Si allowed the plants to recover from salinity stress by improving their physiology and photosynthesis. During salinity stress, Si prevented oxidative damage by increasing the activities of antioxidant enzymes. Furthermore, Si supplementation recovered the nutrient imbalance that had occurred during salinity stress. Additionally, proteomic analysis by two-dimensional gel electrophoresis (2DE) followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) revealed that Si treatment upregulated the accumulation of proteins involved in several metabolic processes, particularly those associated with nucleotide binding and transferase activity. Moreover, Si modulated the expression of vital proteins involved in ubiquitin-mediated nucleosome pathway and carbohydrate metabolism. Overall, the results illustrate that Si application induced resistance against salinity stress in C. annuum by regulating the physiology, antioxidant metabolism, and protein expression.


Assuntos
Antioxidantes/metabolismo , Capsicum/genética , Proteínas de Plantas/biossíntese , Estresse Fisiológico/efeitos dos fármacos , Capsicum/enzimologia , Capsicum/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Proteômica , Salinidade , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Silício/toxicidade
19.
Int J Mol Sci ; 17(3): 399, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26999126

RESUMO

Scrophularia kakudensis is an important medicinal plant with pharmaceutically valuable secondary metabolites. To develop a sustainable source of naturaceuticals with vital therapeutic importance, a cell suspension culture was established in S. kakudensis for the first time. Friable calli were induced from the leaf explants cultured on a Murashige and Skoog (MS) medium containing 3.0 mg·L(-1) 6-benzyladenine (BA) in a combination with 2 mg·L(-1) 2,4-dichlorophenoxy acetic acid (2,4-D). From the callus cultures, a cell suspension culture was initiated and the cellular differentiation was investigated. In addition, the effect of biotic elicitors such as methyl jasmonate (MeJa), salicylic acid (SA), and sodium nitroprusside (SNP) on the accumulation of secondary metabolites and antioxidant properties was demonstrated. Among the elicitors, the MeJa elicited the accumulation of total phenols, flavonoids, and acacetin, a flavonoid compound with multiple pharmaceutical values. Similarly, the higher concentrations of the MeJa significantly modulated the activities of antioxidant enzymes and enhanced the scavenging potentials of free radicals of cell suspension extracts. Overall, the outcomes of this study can be utilized for the large scale production of pharmaceutically important secondary metabolites from S. kakudensis through cell suspension cultures.


Assuntos
Antioxidantes/metabolismo , Técnicas de Cultura de Células/métodos , Scrophularia/metabolismo , Acetatos/farmacologia , Ciclopentanos/farmacologia , Flavonoides/metabolismo , Nitroprussiato/farmacologia , Oxilipinas/farmacologia , Fenóis/metabolismo , Ácido Salicílico/farmacologia , Scrophularia/citologia , Scrophularia/crescimento & desenvolvimento
20.
Biomed Res Int ; 2015: 480564, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26649304

RESUMO

The current study deals with in vitro propagation, antioxidant property estimation, and assessment of acacetin content in Scrophularia kakudensis Franch. Adventitious shoot induction was achieved from the nodal explant with the highest number of adventitious shoots per explant (17.4) on Murashige and Skoog's (MS) medium fortified with 2.0 mg·L(-1) 6-benzyladenine (BA) and 0.5 mg L(-1) indole-3-acetic acid (IAA). Maximum number of roots per plant (16.5) was noted in half strength MS medium supplemented with 0.5 mg·L(-1) IAA. The regenerated plants displayed successful survival ratio (95%) in the greenhouse. The highest content of acacetin, a pharmaceutically important flavonoid, was observed in the shoot extracts (in vitro: 32.83 µg·g(-1) FW; in vivo: 30.05 µg·g(-1) FW) followed by root extracts. Total phenol and flavonoid contents along with free radical scavenging assays revealed the occurrence of larger amount of antioxidants in shoot extract in comparison with callus and root extracts of S. kakudensis. Thus, the outcome of the present study can be highly beneficial for the germplasm conservation and commercial cultivation of S. kakudensis for therapeutic purposes.


Assuntos
Antioxidantes/química , Extratos Vegetais/química , Scrophularia/química , Antioxidantes/farmacologia , Compostos de Bifenilo/química , DNA/efeitos dos fármacos , Flavonoides/análise , Flavonoides/química , Oxirredução/efeitos dos fármacos , Fenóis/análise , Fenóis/química , Picratos/química , Brotos de Planta/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA