Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Res ; 20(6): 841-853, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35302608

RESUMO

Inhibiting androgen signaling using androgen signaling inhibitors (ASI) remains the primary treatment for castrate-resistant prostate cancer. Acquired resistance to androgen receptor (AR)-targeted therapy represents a major impediment to durable clinical response. Understanding resistance mechanisms, including the role of AR expressed in other cell types within the tumor microenvironment, will extend the clinical benefit of AR-targeted therapy. Here, we show the ASI enzalutamide induces vascular catastrophe and promotes hypoxia and microenvironment adaptation. We characterize treatment-induced hypoxia, and subsequent induction of angiogenesis, as novel mechanisms of relapse to enzalutamide, highlighting the importance of two hypoxia-regulated cytokines in underpinning relapse. We confirmed AR expression in CD34+ vascular endothelium of biopsy tissue and human vascular endothelial cells (HVEC). Enzalutamide attenuated angiogenic tubule formation and induced cytotoxicity in HVECs in vitro, and rapidly induced sustained hypoxia in LNCaP xenografts. Subsequent reoxygenation, following prolonged enzalutamide treatment, was associated with increased tumor vessel density and accelerated tumor growth. Hypoxia increased AR expression and transcriptional activity in prostate cells in vitro. Coinhibition of IL8 and VEGF-A restored tumor response in the presence of enzalutamide, confirming the functional importance of their elevated expression in enzalutamide-resistant models. Moreover, coinhibition of IL8 and VEGF-A resulted in a durable, effective resolution of enzalutamide-sensitive prostate tumors. We conclude that concurrent inhibition of two hypoxia-induced factors, IL8 and VEGF-A, prolongs tumor sensitivity to enzalutamide in preclinical models and may delay the onset of enzalutamide resistance. IMPLICATIONS: Targeting hypoxia-induced signaling may extend the therapeutic benefit of enzalutamide, providing an improved treatment strategy for patients with resistant disease.


Assuntos
Antagonistas de Receptores de Andrógenos , Neoplasias de Próstata Resistentes à Castração , Antagonistas de Androgênios/farmacologia , Antagonistas de Receptores de Andrógenos/farmacologia , Androgênios/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Células Endoteliais/metabolismo , Humanos , Hipóxia/tratamento farmacológico , Interleucina-8/genética , Masculino , Recidiva Local de Neoplasia/tratamento farmacológico , Nitrilas/farmacologia , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA