Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 93(6): 065109, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35778024

RESUMO

CHESS, chopper spectrometer examining small samples, is a planned direct geometry neutron chopper spectrometer designed to detect and analyze weak signals intrinsic to small cross sections (e.g., small mass, small magnetic moments, or neutron absorbing materials) in powders, liquids, and crystals. CHESS is optimized to enable transformative investigations of quantum materials, spin liquids, thermoelectrics, battery materials, and liquids. The broad dynamic range of the instrument is also well suited to study relaxation processes and excitations in soft and biological matter. The 15 Hz repetition rate of the Second Target Station at the Spallation Neutron Source enables the use of multiple incident energies within a single source pulse, greatly expanding the information gained in a single measurement. Furthermore, the high flux grants an enhanced capability for polarization analysis. This enables the separation of nuclear from magnetic scattering or coherent from incoherent scattering in hydrogenous materials over a large range of energy and momentum transfer. This paper presents optimizations and technical solutions to address the key requirements envisioned in the science case and the anticipated uses of this instrument.

2.
Phys Rev Lett ; 129(25): 255901, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36608232

RESUMO

Fast-propagating waves in the phase of incommensurate structures, called phasons, have long been argued to enhance thermal transport. Although supersonic phason velocities have been observed, the lifetimes, from which mean free paths can be determined, have not been resolved. Using inelastic neutron scattering and thermal conductivity measurements, we establish that phasons in piezoelectric fresnoite make a major contribution to thermal conductivity by propagating with higher group velocities and longer mean free paths than phonons. The phason contribution to thermal conductivity is maximum near room temperature, where it is the single largest contributing degree of freedom.

3.
Phys Rev Lett ; 125(8): 085504, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32909782

RESUMO

All phonons in a single crystal of NaBr are measured by inelastic neutron scattering at temperatures of 10, 300, and 700 K. Even at 300 K, the phonons, especially the longitudinal-optical phonons, show large shifts in frequencies and show large broadenings in energy owing to anharmonicity. Ab initio computations are first performed with the quasiharmonic approximation (QHA) in which the phonon frequencies depend only on V and on T only insofar as it alters V by thermal expansion. This QHA is an unqualified failure for predicting the temperature dependence of phonon frequencies, even 300 K, and the thermal expansion is in error by a factor of 4. Ab initio computations that include both anharmonicity and quasiharmonicity successfully predict both the temperature dependence of phonons and the large thermal expansion of NaBr. The frequencies of longitudinal-optical phonon modes decrease significantly with temperature owing to the real part of the phonon self-energy from explicit anharmonicity originating from the cubic anharmonicity of nearest-neighbor NaBr bonds. Anharmonicity is not a correction to the QHA predictions of thermal expansion and thermal phonon shifts but dominates the behavior.

4.
Sci Adv ; 6(31): eaaz1842, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32789169

RESUMO

Lead halide perovskites are strong candidates for high-performance low-cost photovoltaics, light emission, and detection applications. A hot-phonon bottleneck effect significantly extends the cooling time of hot charge carriers, which thermalize through carrier-optic phonon scattering, followed by optic phonon decay to acoustic phonons and finally thermal conduction. To understand these processes, we adjust the lattice dynamics independently of electronics by changing isotopes. We show that doubling the mass of hydrogen in methylammonium lead iodide by replacing protons with deuterons causes a large 20 to 50% softening of the longitudinal acoustic phonons near zone boundaries, reduces thermal conductivity by ~50%, and slows carrier relaxation kinetics. Phonon softening is attributed to anticrossing with the slowed libration modes of the deuterated molecules and the reduced thermal conductivity to lowered phonon velocities. Our results reveal how tuning the organic molecule dynamics enables control of phonons important to thermal conductivity and the hot-phonon bottleneck.

5.
Sci Adv ; 5(9): eaat9461, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31548980

RESUMO

Local thermal magnetization fluctuations in Li-doped MnTe are found to increase its thermopower α strongly at temperatures up to 900 K. Below the Néel temperature (T N ~ 307 K), MnTe is antiferromagnetic, and magnon drag contributes αmd to the thermopower, which scales as ~T 3. Magnon drag persists into the paramagnetic state up to >3 × T N because of long-lived, short-range antiferromagnet-like fluctuations (paramagnons) shown by neutron spectroscopy to exist in the paramagnetic state. The paramagnon lifetime is longer than the charge carrier-magnon interaction time; its spin-spin spatial correlation length is larger than the free-carrier effective Bohr radius and de Broglie wavelength. Thus, to itinerant carriers, paramagnons look like magnons and give a paramagnon-drag thermopower. This contribution results in an optimally doped material having a thermoelectric figure of merit ZT > 1 at T > ~900 K, the first material with a technologically meaningful thermoelectric energy conversion efficiency from a spin-caloritronic effect.

6.
Nat Commun ; 10(1): 1928, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31028271

RESUMO

Lead chalcogenides have exceptional thermoelectric properties and intriguing anharmonic lattice dynamics underlying their low thermal conductivities. An ideal material for thermoelectric efficiency is the phonon glass-electron crystal, which drives research on strategies to scatter or localize phonons while minimally disrupting electronic-transport. Anharmonicity can potentially do both, even in perfect crystals, and simulations suggest that PbSe is anharmonic enough to support intrinsic localized modes that halt transport. Here, we experimentally observe high-temperature localization in PbSe using neutron scattering but find that localization is not limited to isolated modes - zero group velocity develops for a significant section of the transverse optic phonon on heating above a transition in the anharmonic dynamics. Arrest of the optic phonon propagation coincides with unusual sharpening of the longitudinal acoustic mode due to a loss of phase space for scattering. Our study shows how nonlinear physics beyond conventional anharmonic perturbations can fundamentally alter vibrational transport properties.

7.
Sci Adv ; 5(3): eaaw4367, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30915399

RESUMO

Gehring et al. argue that a splitting observed by us in the transverse acoustic (TA) phonon in the relaxor ferroelectric Pb[(Mg1/3Nb2/3)1-x Ti x ]O3 with x = 0.30 (PMN-30PT) is caused by a combination of inelastic-elastic multiple scattering processes called ghostons. Their argument is motivated by differences observed between their measurements made on a triple-axis spectrometer and our measurements on a time-of-flight spectrometer. We show that the differences can be explained by differences in the instrument resolution functions. We demonstrate that the multiple scattering conditions proposed by Gehring et al. do not work for our scattering geometry. We also show that, when a ghoston is present, it is too weak to detect and therefore cannot explain the splitting. Last, this phonon splitting is just one part of the argument, and the overall conclusion of the original paper is supported by other results.

8.
Phys Rev B ; 100(9)2019.
Artigo em Inglês | MEDLINE | ID: mdl-33553858

RESUMO

We have measured the room-temperature phonon spectrum of Mo-stabilized γ-U. The dispersion curves show unusual softening near the H point, q = [1/2, 1/2, 1/2], which may derive from the metastability of the γ-U phase or from strong electron-phonon coupling. Near the zone center, the dispersion curves agree well with theory, though significant differences are observed away from the zone center. The experimental phonon density of states is shifted to higher energy compared to theory and high-temperature neutron scattering. The elastic constants of γ-UMo are similar to those of body-centered cubic elemental metals.

9.
Phys Rev Lett ; 120(24): 245701, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29956961

RESUMO

Shape memory strain glasses are frustrated ferroelastic materials with glasslike slow relaxation and nanodomains. It is possible to change a NiCoMnIn Heusler alloy from a martensitically transforming alloy to a nontransforming strain glass by annealing, but minimal differences are evident in the short- or long-range order above the transition temperature-although there is a structural relaxation and a 0.18% lattice expansion in the annealed sample. Using neutron scattering we find glasslike phonon damping in the strain glass but not the transforming alloy at temperatures well above the transition. Damping occurs in the mode with displacements matching the martensitic transformation. With support from first-principles calculations, we argue that the strain glass originates not with transformation strain pinning but with a disruption of the underlying electronic instability when disorder resonance states cross the Fermi level.

10.
Nat Commun ; 9(1): 1823, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29739934

RESUMO

Controlling the thermal energy of lattice vibrations separately from electrons is vital to many applications including electronic devices and thermoelectric energy conversion. To remove heat without shorting electrical connections, heat must be carried in the lattice of electrical insulators. Phonons are limited to the speed of sound, which, compared to the speed of electronic processes, puts a fundamental constraint on thermal management. Here we report a supersonic channel for the propagation of lattice energy in the technologically promising piezoelectric mineral fresnoite (Ba2TiSi2O8) using neutron scattering. Lattice energy propagates 2.8-4.3 times the speed of sound in the form of phasons, which are caused by an incommensurate modulation in the flexible framework structure of fresnoite. The phasons enhance the thermal conductivity by 20% at room temperature and carry lattice-energy signals at speeds beyond the limits of phonons.

11.
Nat Commun ; 5: 3683, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24718289

RESUMO

Relaxor ferroelectrics exemplify a class of functional materials where interplay between disorder and phase instability results in inhomogeneous nanoregions. Although known for about 30 years, there is no definitive explanation for polar nanoregions (PNRs). Here we show that ferroelectric phonon localization drives PNRs in relaxor ferroelectric PMN-30%PT using neutron scattering. At the frequency of a preexisting resonance mode, nanoregions of standing ferroelectric phonons develop with a coherence length equal to one wavelength and the PNR size. Anderson localization of ferroelectric phonons by resonance modes explains our observations and, with nonlinear slowing, the PNRs and relaxor properties. Phonon localization at additional resonances near the zone edges explains competing antiferroelectric distortions known to occur at the zone edges. Our results indicate the size and shape of PNRs that are not dictated by complex structural details, as commonly assumed, but by phonon resonance wave vectors. This discovery could guide the design of next generation relaxor ferroelectrics.


Assuntos
Eletricidade , Compostos de Ferro/química , Nanoestruturas/química , Fônons , Cristalização , Difração de Nêutrons , Difração de Raios X
12.
Sci Rep ; 1: 4, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22355523

RESUMO

Intrinsic localized modes (ILMs) - also known as discrete breathers - are localized excitations that form without structural defects in discrete nonlinear lattices. For crystals in thermal equilibrium ILMs were proposed to form randomly, an idea used to interpret temperature activated signatures of ILMs in α-U and NaI. Here, however, we report neutron scattering measurements of lattice vibrations in NaI that provide evidence of an underlying organization: (i) with small temperature changes ILMs move as a unit back-and-forth between [111] and [011] orientations, and (ii) when [011] ILMs lock in at 636 K the transverse optic (TO) mode splits into three modes with symmetry-breaking dynamical structure resembling that of a superlattice, but there are no superlattice Bragg reflections and the pattern itself has crystal momentum. We conclude that this dynamical pattern is not derived from the rearrangement of atoms but from a coherent arrangement of ILMs decorating the crystal lattice in equilibrium.


Assuntos
Cristalização/métodos , Modelos Químicos , Modelos Moleculares , Iodeto de Sódio/química , Simulação por Computador , Vibração
13.
Phys Rev Lett ; 101(13): 135703, 2008 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-18851463

RESUMO

Elastic neutron-scattering, inelastic x-ray scattering, specific-heat, and pressure-dependent electrical transport measurements have been made on single crystals of AuZn and Au0.52Zn0.48. Elastic neutron scattering detects new commensurate Bragg peaks (modulation) appearing at Q =(1.33,0.67,0) at temperatures corresponding to each sample's transition temperature (TM = 64 and 45 K, respectively). Although the new Bragg peaks appear in a discontinuous manner in the Au0.52Zn0.48 sample, they appear in a continuous manner in AuZn. Surprising us, the temperature dependence of the AuZn Bragg peak intensity and the specific-heat jump near TM are in favorable accord with a continuous transition. A fit to the pressure dependence of TM suggests the presence of a critical end point in the AuZn phase diagram located at TM* = 2.7 K and p* = 3.1 GPa.


Assuntos
Ligas de Ouro/química , Zinco/química , Materiais Biocompatíveis/química , Difração de Nêutrons , Temperatura , Termodinâmica , Difração de Raios X
14.
Phys Rev Lett ; 96(12): 125501, 2006 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-16605922

RESUMO

Phonon dispersion curves were obtained from inelastic x-ray and neutron scattering measurements on alpha-uranium single crystals at temperatures from 298 to 573 K. Both measurements showed a softening and an abrupt loss of intensity in the longitudinal optic branch along [00zeta] above 450 K. Above the same temperature a new dynamical mode of comparable intensity emerges along the [01zeta] zone boundary with energy near the top of the phonon spectrum. The new mode forms without a structural transition but coincides with an anomaly in the mechanical deformation behavior. We argue that the mode is an intrinsically localized vibration and formed as a result of a strong electron-phonon interaction.

15.
Phys Rev Lett ; 96(7): 076401, 2006 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-16606114

RESUMO

Uranium is the only known element that features a charge-density wave (CDW) and superconductivity. We report a comparison of the specific heat of single-crystal and polycrystalline alpha-uranium. In the single crystal we find excess contributions to the heat capacity at 41 K, 38 K, and 23 K, with a Debye temperature ThetaD = 265 K. In the polycrystalline sample the heat capacity curve is thermally broadened (ThetaD = 184 K), but no excess heat capacity was observed. The excess heat capacity Cphi (taken as the difference between the single-crystal and polycrystal heat capacities) is well described in terms of collective-mode excitations above their respective pinning frequencies. This attribution is represented by a modified Debye spectrum with two cutoff frequencies, a pinning frequency V0 for the pinned CDW (due to grain boundaries in the polycrystal), and a normal Debye acoustic frequency occurring in the single crystal.

16.
Phys Rev Lett ; 86(14): 3076-9, 2001 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-11290111

RESUMO

Phonon density-of-states curves were obtained from inelastic neutron scattering spectra from the three crystalline phases of uranium at temperatures from 50 to 1213 K. The alpha-phase showed an unusually large thermal softening of phonon frequencies. Analysis of the vibrational power spectrum showed that this phonon softening originates with the softening of a harmonic solid, as opposed to vibrations in anharmonic potentials. It follows that thermal excitations of electronic states are more significant thermodynamically than are the classical volume effects. For the alpha-beta and beta-gamma phase transitions, vibrational and electronic entropies were comparable.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA