Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 13(2): 114, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35121743

RESUMO

Obesity creates a localized inflammatory reaction in the adipose, altering secretion of adipocyte-derived factors that contribute to pathologies including cancer. We have previously shown that adiponectin inhibits pancreatic cancer by antagonizing leptin-induced STAT3 activation. Yet, the effects of adiponectin on pancreatic cancer cell metabolism have not been addressed. In these studies, we have uncovered a novel metabolic function for the synthetic adiponectin-receptor agonist, AdipoRon. Treatment of PDAC cells with AdipoRon led to mitochondrial uncoupling and loss of ATP production. Concomitantly, AdipoRon-treated cells increased glucose uptake and utilization. This metabolic switch further correlated with AMPK mediated inhibition of the prolipogenic factor acetyl coenzyme A carboxylase 1 (ACC1), which is known to initiate fatty acid catabolism. Yet, measurements of fatty acid oxidation failed to detect any alteration in response to AdipoRon treatment, suggesting a deficiency for compensation. Additional disruption of glycolytic dependence, using either a glycolysis inhibitor or low-glucose conditions, demonstrated an impairment of growth and survival of all pancreatic cancer cell lines tested. Collectively, these studies provide evidence that pancreatic cancer cells utilize metabolic plasticity to upregulate glycolysis in order to adapt to suppression of oxidative phosphorylation in the presence of AdipoRon.


Assuntos
Neoplasias Pancreáticas , Receptores Artificiais , Adiponectina/metabolismo , Adiponectina/farmacologia , Ácidos Graxos , Glicólise , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Piperidinas , Receptores de Adiponectina/metabolismo , Receptores Artificiais/metabolismo , Neoplasias Pancreáticas
3.
J Alzheimers Dis ; 85(1): 381-394, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34806611

RESUMO

BACKGROUND: Amyloid-ß (Aß), which derives from the amyloid-ß protein precursor (AßPP), forms plaques and serves as a fluid biomarker in Alzheimer's disease (AD). How Aß forms from AßPP is known, but questions relating to AßPP and Aß biology remain unanswered. AD patients show mitochondrial dysfunction, and an Aß/AßPP mitochondria relationship exists. OBJECTIVE: We considered how mitochondrial biology may impact AßPP and Aß biology. METHODS: SH-SY5Y cells were transfected with AßPP constructs. After treatment with FCCP (uncoupler), Oligomycin (ATP synthase inhibitor), or starvation Aß levels were measured. ß-secretase (BACE1) expression was measured. Mitochondrial localized full-length AßPP was also measured. All parameters listed were measured in ρ0 cells on an SH-SY5Y background. iPSC derived neurons were also used to verify key results. RESULTS: We showed that mitochondrial depolarization routes AßPP to, while hyperpolarization routes AßPP away from, the organelle. Mitochondrial AßPP and cell Aß secretion inversely correlate, as cells with more mitochondrial AßPP secrete less Aß, and cells with less mitochondrial AßPP secrete more Aß. An inverse relationship between secreted/extracellular Aß and intracellular Aß was observed. CONCLUSION: Our findings indicate mitochondrial function alters AßPP localization and suggest enhanced mitochondrial activity promotes Aß secretion while depressed mitochondrial activity minimizes Aß secretion. Our data complement other studies that indicate a mitochondrial, AßPP, and Aß nexus, and could help explain why cerebrospinal fluid Aß is lower in those with AD. Our data further suggest Aß secretion could serve as a biomarker of cell or tissue mitochondrial function.


Assuntos
Doença de Alzheimer/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Potencial da Membrana Mitocondrial , Doença de Alzheimer/patologia , Ácido Aspártico Endopeptidases/metabolismo , Encéfalo/patologia , Linhagem Celular Tumoral , Humanos , Mitocôndrias/metabolismo , Neuroblastoma/patologia , Neurônios/metabolismo
4.
Br J Cancer ; 124(1): 166-175, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33024269

RESUMO

BACKGROUND: Previously, we identified ITIH5 as a suppressor of pancreatic ductal adenocarcinoma (PDAC) metastasis in experimental models. Expression of ITIH5 correlated with decreased cell motility, invasion and metastasis without significant inhibition of primary tumour growth. Here, we tested whether secretion of ITIH5 is required to suppress liver metastasis and sought to understand the role of ITIH5 in human PDAC. METHODS: We expressed mutant ITIH5 with deletion of the N-terminal secretion sequence (ITIH5Δs) in highly metastatic human PDAC cell lines. We used a human tissue microarray (TMA) to compare ITIH5 levels in uninvolved pancreas, primary and metastatic PDAC. RESULTS: Secretion-deficient ITIH5Δs was sufficient to suppress liver metastasis. Similar to secreted ITIH5, expression of ITIH5Δs was associated with rounded cell morphology, reduced cell motility and reduction of liver metastasis. Expression of ITIH5 is low in both human primary PDAC and matched metastases. CONCLUSIONS: Metastasis suppression by ITIH5 may be mediated by an intracellular mechanism. In human PDAC, loss of ITIH5 may be an early event and ITIH5-low PDAC cells in primary tumours may be selected for liver metastasis. Further defining the ITIH5-mediated pathway in PDAC could establish future therapeutic exploitation of this biology and reduce morbidity and mortality associated with PDAC metastasis.


Assuntos
Carcinoma Ductal Pancreático/patologia , Neoplasias Hepáticas/secundário , Invasividade Neoplásica/patologia , Neoplasias Pancreáticas/patologia , Proteínas Secretadas Inibidoras de Proteinases/metabolismo , Animais , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Xenoenxertos , Humanos , Camundongos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas
5.
J Mol Med (Berl) ; 95(9): 951-963, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28597070

RESUMO

The shift by cancer cells toward aerobic glycolysis (Warburg effect) confers selective advantages by utilizing nutrients (e.g., lipids, amino acids, and nucleotides) to build biomass. Lipogenesis is generally enhanced, and its inhibition diminishes proliferation and survival. Re-expression of the metastasis suppressor KISS1 in human melanoma cells results in greater mitochondrial biogenesis, inhibition of glycolysis, utilization of beta-oxidation to provide energy, elevated oxidation of exogenous fatty acids, and increased expression of early-phase lipogenesis genes at both mRNA and protein levels. Correspondingly, the energy sensor AMPKß is phosphorylated, resulting in inhibitory phosphorylation of acetyl-CoA carboxylase (ACC), which is linked to enhanced beta-oxidation. Furthermore, PGC1α is required for KISS1-mediated phosphorylation of ACC and metastasis suppression. Collectively, these data further support the linkages between macromolecular metabolism and metastasis. KEY MESSAGES: • KISS1 alters fatty acid metabolism. • There may be connections between metastasis and metabolism. • PGC1alpha appears to be downstream mediator of KISS1 metastasis suppression.


Assuntos
Glicólise , Kisspeptinas/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Oxirredução , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Glucose/metabolismo , Humanos , Kisspeptinas/metabolismo , Metabolismo dos Lipídeos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fosforilação , Estresse Fisiológico , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA