Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Med Microbiol ; 66(11): 1692-1698, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28984233

RESUMO

PURPOSE: Surface microtopography offers a promising approach for infection control. The goal of this study was to provide evidence that micropatterned surfaces significantly reduce the potential risk of medical device-associated infections. METHODOLOGY: Micropatterned and smooth surfaces were challenged in vitro against the colonization and transference of two representative bacterial pathogens - Staphylococcus aureus and Pseudomonas aeruginosa. A percutaneous rat model was used to assess the effectiveness of the micropattern against device-associated S. aureus infections. After the percutaneous insertion of silicone rods into (healthy or immunocompromised) rats, their backs were inoculated with S. aureus. The bacterial burdens were determined in tissues under the rods and in the spleens. RESULTS: The micropatterns reduced adherence by S. aureus (92.3 and 90.5 % reduction for flat and cylindrical surfaces, respectively), while P. aeruginosa colonization was limited by 99.9 % (flat) and 95.5 % (cylindrical). The micropatterned surfaces restricted transference by 95.1 % for S. aureus and 94.9 % for P. aeruginosa, compared to smooth surfaces. Rats with micropatterned devices had substantially fewer S. aureus in subcutaneous tissues (91 %) and spleens (88 %) compared to those with smooth ones. In a follow-up study, immunocompromised rats with micropatterned devices had significantly lower bacterial burdens on devices (99.5 and 99.9 % reduction on external and internal segments, respectively), as well as in subcutaneous tissues (97.8 %) and spleens (90.7 %) compared to those with smooth devices. CONCLUSION: Micropatterned surfaces exhibited significantly reduced colonization and transference in vitro, as well as lower bacterial burdens in animal models. These results indicate that introducing this micropattern onto surfaces has high potential to reduce medical device-associated infections.


Assuntos
Contaminação de Equipamentos , Equipamentos e Provisões/microbiologia , Propriedades de Superfície , Animais , Ciclofosfamida/farmacologia , Próteses e Implantes/microbiologia , Ratos
2.
Ann Biomed Eng ; 44(12): 3645-3654, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27535564

RESUMO

Tracheal intubation disrupts physiological homeostasis of secretion production and clearance, resulting in secretion accumulation within endotracheal tubes (ETTs). Novel in vitro and in vivo models were developed to specifically recapitulate the clinical manifestations of ETT occlusion. The novel Sharklet™ micropatterned ETT was evaluated, using these models, for the ability to reduce the accumulation of both bacterial biofilm and airway mucus compared to a standard care ETT. Novel ETTs with micropattern on the inner and outer surfaces were placed adjacent to standard care ETTs in in vitro biofilm and airway patency (AP) models. The primary outcome for the biofilm model was to compare commercially-available ETTs (standard care and silver-coated) to micropatterned for quantity of biofilm accumulation. The AP model's primary outcome was to evaluate accumulation of artificial airway mucus. A 24-h ovine mechanical ventilation model evaluated the primary outcome of relative quantity of airway secretion accumulation in the ETTs tested. The secondary outcome was measuring the effect of secretion accumulation in the ETTs on airway resistance. Micropatterned ETTs significantly reduced biofilm by 71% (p = 0.016) compared to smooth ETTs. Moreover, micropatterned ETTs reduced lumen occlusion, in the AP model, as measured by cross-sectional area, in distal (85%, p = 0.005), middle (84%, p = 0.001) and proximal (81%, p = 0.002) sections compared to standard care ETTs. Micropatterned ETTs reduced the volume of secretion accumulation in a sheep model of occlusion by 61% (p < 0.001) after 24 h of mechanical ventilation. Importantly, micropatterned ETTs reduced the rise in ventilation peak inspiratory pressures over time by as much as 49% (p = 0.005) compared to standard care ETTs. Micropatterned ETTs, demonstrated here to reduce bacterial contamination and mucus occlusion, will have the capacity to limit complications occurring during mechanical ventilation and ultimately improve patient care.


Assuntos
Biofilmes/crescimento & desenvolvimento , Intubação Intratraqueal/instrumentação , Staphylococcus aureus Resistente à Meticilina/fisiologia , Modelos Biológicos , Pseudomonas aeruginosa/fisiologia , Respiração Artificial/instrumentação , Humanos , Propriedades de Superfície
3.
Clin Transl Med ; 4: 9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25852825

RESUMO

BACKGROUND: Catheter-related bloodstream infections (CRBSIs) and catheter-related thrombosis (CRT) are common complications of central venous catheters (CVC), which are used to monitor patient health and deliver medications. CVCs are subject to protein adsorption and platelet adhesion as well as colonization by the natural skin flora (i.e. Staphylococcus aureus and Staphylococcus epidermidis). Antimicrobial and antithrombotic drugs can prevent infections and thrombosis-related complications, but have associated resistance and safety risks. Surface topographies have shown promise in limiting platelet and bacterial adhesion, so it was hypothesized that an engineered Sharklet micropattern, inspired by shark-skin, may provide a combined approach as it has wide reaching anti-fouling capabilities. To assess the feasibility for this micropattern to improve CVC-related healthcare outcomes, bacterial colonization and platelet interactions were analyzed in vitro on a material common for vascular access devices. METHODS: To evaluate bacterial inhibition after simulated vascular exposure, micropatterned thermoplastic polyurethane surfaces were preconditioned with blood proteins in vitro then subjected to a bacterial challenge for 1 and 18 h. Platelet adhesion was assessed with fluorescent microscopy after incubation of the surfaces with platelet-rich plasma (PRP) supplemented with calcium. Platelet activation was further assessed by monitoring fibrin formation with fluorescent microscopy after exposure of the surfaces to platelet-rich plasma (PRP) supplemented with calcium in a flow-cell. Results are reported as percent reductions and significance is based on t-tests and ANOVA models of log reductions. All experiments were replicated at least three times. RESULTS: Blood and serum conditioned micropatterned surfaces reduced 18 h S. aureus and S. epidermidis colonization by 70% (p ≤ 0.05) and 71% (p < 0.01), respectively, when compared to preconditioned unpatterned controls. Additionally, platelet adhesion and fibrin sheath formation were reduced by 86% and 80% (p < 0.05), respectively, on the micropattern, when compared to controls. CONCLUSIONS: The Sharklet micropattern, in a CVC-relevant thermoplastic polyurethane, significantly reduced bacterial colonization and relevant platelet interactions after simulated vascular exposure. These results suggest that the incorporation of the Sharklet micropattern on the surface of a CVC may inhibit the initial events that lead to CRBSI and CRT.

4.
Artigo em Inglês | MEDLINE | ID: mdl-25232470

RESUMO

BACKGROUND: Bacterial surface contamination contributes to transmission of nosocomial infections. Chemical cleansers used to control surface contamination are often toxic and incorrectly implemented. Additional non-toxic strategies should be combined with regular cleanings to mitigate risks of human error and further decrease rates of nosocomial infections. The Sharklet micropattern (MP), inspired by shark skin, is an effective tool for reducing bacterial load on surfaces without toxic additives. The studies presented here were carried out to investigate the MP surfaces capability to reduce colonization of methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) compared to smooth control surfaces. METHODS: The MP and smooth surfaces produced in acrylic film were compared for remaining bacterial contamination and colonization following inoculation. Direct sampling of surfaces was carried out after inoculation by immersion, spray, and/or touch methods. Ultimately, a combination assay was developed to assess bacterial contamination after touch transfer inoculation combined with drying (persistence) to mimic common environmental contamination scenarios in the clinic or hospital environment. The combination transfer and persistence assay was then used to test antimicrobial copper beside the MP for the ability to reduce MSSA and MRSA challenge. RESULTS: The MP reduced bacterial contamination with log reductions ranging from 87-99% (LR = 0.90-2.18; p < 0.05) compared to smooth control surfaces. The MP was more effective than the 99.9% pure copper alloy C11000 at reducing surface contamination of S. aureus (MSSA and MRSA) through transfer and persistence of bacteria. The MP reduced MSSA by as much as 97% (LR = 1.54; p < 0.01) and MRSA by as much as 94% (LR = 1.26; p < 0.005) compared to smooth controls. Antimicrobial copper had no significant effect on MSSA contamination, but reduced MRSA contamination by 80% (LR = 0.70; p < 0.005). CONCLUSION: The assays developed in this study mimic hospital environmental contamination events to demonstrate the performance of a MP to limit contamination under multiple conditions. Antimicrobial copper has been implemented in hospital room studies to evaluate its impact on nosocomial infections and a decrease in HAI rate was shown. Similar implementation of the MP has potential to reduce the incidence of HAIs although future clinical studies will be necessary to validate the MP's true impact.

5.
Appl Environ Microbiol ; 79(11): 3413-24, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23524683

RESUMO

The Staphylococcus aureus cid and lrg operons play significant roles in the control of autolysis and accumulation of extracellular genomic DNA (eDNA) during biofilm development. Although the molecular mechanisms mediating this control are only beginning to be revealed, it is clear that cell death must be limited to a subfraction of the biofilm population. In the present study, we tested the hypothesis that cid and lrg expression varies during biofilm development as a function of changes in the availability of oxygen. To examine cid and lrg promoter activity during biofilm development, fluorescent reporter fusion strains were constructed and grown in a BioFlux microfluidic system, generating time-lapse epifluorescence images of biofilm formation, which allows the spatial and temporal localization of gene expression. Consistent with cid induction under hypoxic conditions, the cid::gfp fusion strain expressed green fluorescent protein predominantly within the interior of the tower structures, similar to the pattern of expression observed with a strain carrying a gfp fusion to the hypoxia-induced promoter controlling the expression of the lactose dehydrogenase gene. The lrg promoter was also expressed within towers but appeared more diffuse throughout the tower structures, indicating that it was oxygen independent. Unexpectedly, the results also demonstrated the existence of tower structures with different expression phenotypes and physical characteristics, suggesting that these towers exhibit different metabolic activities. Overall, the findings presented here support a model in which oxygen is important in the spatial and temporal control of cid expression within a biofilm and that tower structures formed during biofilm development exhibit metabolically distinct niches.


Assuntos
Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica/genética , Técnicas Analíticas Microfluídicas/métodos , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/metabolismo , Microscopia de Fluorescência , Modelos Biológicos , Oxigênio/metabolismo , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase em Tempo Real , Staphylococcus aureus/genética
6.
J Bacteriol ; 195(8): 1637-44, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23354748

RESUMO

Pseudomonas aeruginosa strains recovered from chronic pulmonary infections in cystic fibrosis patients are frequently mucoid. Such strains express elevated levels of alginate but reduced levels of the aggregative polysaccharide Psl; however, the mechanistic basis for this regulation is not completely understood. Elevated pslA expression was observed in an amrZ null mutant and in strains expressing a DNA-binding-deficient AmrZ. AmrZ is a transcription factor that positively regulates twitching motility and alginate synthesis, two phenotypes involved in P. aeruginosa biofilm development. AmrZ bound directly to the pslA promoter in vitro, and molecular analyses indicate that AmrZ represses psl expression by binding to a site overlapping the promoter. Altered expression of amrZ in nonmucoid strains impacted biofilm structure and architecture, as structured microcolonies were observed with low AmrZ production and flat biofilms with amrZ overexpression. These biofilm phenotypes correlated with Psl levels, since we observed elevated Psl production in amrZ mutants and lower Psl production in amrZ-overexpressing strains. These observations support the hypothesis that AmrZ is a multifunctional regulator mediating transition of P. aeruginosa biofilm infections from colonizing to chronic biofilms through repression of the psl operon while activating the algD operon.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica/fisiologia , Pseudomonas aeruginosa/fisiologia , Fatores de Transcrição/metabolismo , Transcrição Gênica/fisiologia , Alginatos/metabolismo , Proteínas de Bactérias/genética , Ensaio de Imunoadsorção Enzimática/métodos , Genótipo , Ácido Glucurônico/genética , Ácido Glucurônico/metabolismo , Ácidos Hexurônicos/metabolismo , Immunoblotting , Mutação , Óperon/genética , Óperon/fisiologia , Polissacarídeos/genética , Polissacarídeos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Pseudomonas aeruginosa/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética
7.
FEMS Microbiol Rev ; 36(4): 893-916, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22212072

RESUMO

Biofilms are a predominant form of growth for bacteria in the environment and in the clinic. Critical for biofilm development are adherence, proliferation, and dispersion phases. Each of these stages includes reinforcement by, or modulation of, the extracellular matrix. Pseudomonas aeruginosa has been a model organism for the study of biofilm formation. Additionally, other Pseudomonas species utilize biofilm formation during plant colonization and environmental persistence. Pseudomonads produce several biofilm matrix molecules, including polysaccharides, nucleic acids, and proteins. Accessory matrix components shown to aid biofilm formation and adaptability under varying conditions are also produced by pseudomonads. Adaptation facilitated by biofilm formation allows for selection of genetic variants with unique and distinguishable colony morphology. Examples include rugose small-colony variants and wrinkly spreaders (WS), which over produce Psl/Pel or cellulose, respectively, and mucoid bacteria that over produce alginate. The well-documented emergence of these variants suggests that pseudomonads take advantage of matrix-building subpopulations conferring specific benefits for the entire population. This review will focus on various polysaccharides as well as additional Pseudomonas biofilm matrix components. Discussions will center on structure-function relationships, regulation, and the role of individual matrix molecules in niche biology.


Assuntos
Biofilmes , Matriz Extracelular/química , Pseudomonas/química , Pseudomonas/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Matriz Extracelular/metabolismo , Ácidos Nucleicos/química , Ácidos Nucleicos/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Pseudomonas/genética
8.
Infect Immun ; 79(8): 3087-95, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21646454

RESUMO

Biofilms contribute to Pseudomonas aeruginosa persistence in a variety of diseases, including cystic fibrosis, burn wounds, and chronic suppurative otitis media. However, few studies have directly addressed P. aeruginosa biofilms in vivo. We used a chinchilla model of otitis media, which has previously been used to study persistent Streptococcus pneumoniae and Haemophilus influenzae infections, to show that structures formed in vivo are biofilms of bacterial and host origin within a matrix that includes Psl, a P. aeruginosa biofilm polysaccharide. We evaluated three biofilm and/or virulence mediators of P. aeruginosa known to affect biofilm formation in vitro and pathogenesis in vivo--bis-(3',5')-cyclic dimeric GMP (c-di-GMP), flagella, and quorum sensing--in a chinchilla model. We show that c-di-GMP overproduction has a positive impact on bacterial persistence, while quorum sensing increases virulence. We found no difference in persistence attributed to flagella. We conclude from these studies that a chinchilla otitis media model provides a means to evaluate pathogenic mediators of P. aeruginosa and that in vitro phenotypes should be examined in multiple infection systems to fully understand their role in disease.


Assuntos
Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Otite Média/veterinária , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/patogenicidade , Animais , Chinchila , Doença Crônica , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Modelos Animais de Doenças , Humanos , Otite Média/microbiologia , Otite Média/patologia , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/metabolismo , Percepção de Quorum , Doenças dos Roedores/microbiologia , Doenças dos Roedores/patologia , Virulência
9.
Proc Natl Acad Sci U S A ; 107(32): 14407-12, 2010 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-20660751

RESUMO

Biofilms are surface-associated communities of microbes encompassed by an extracellular matrix. It is estimated that 80% of all bacterial infections involve biofilm formation, but the structure and regulation of biofilms are incompletely understood. Extracellular DNA (eDNA) is a major structural component in many biofilms of the pathogenic bacterium Staphylococcus aureus, but its role is enigmatic. Here, we demonstrate that beta toxin, a neutral sphingomyelinase and a virulence factor of S. aureus, forms covalent cross-links to itself in the presence of DNA (we refer to this as biofilm ligase activity, independent of sphingomyelinase activity) producing an insoluble nucleoprotein matrix in vitro. Furthermore, we show that beta toxin strongly stimulates biofilm formation in vivo as demonstrated by a role in causation of infectious endocarditis in a rabbit model. Together, these results suggest that beta toxin cross-linking in the presence of eDNA assists in forming the skeletal framework upon which staphylococcal biofilms are established.


Assuntos
Toxinas Bacterianas/metabolismo , Biofilmes/crescimento & desenvolvimento , Proteínas Hemolisinas/metabolismo , Nucleoproteínas/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Staphylococcus/crescimento & desenvolvimento , Animais , Catálise , DNA Bacteriano , Endocardite , Coelhos , Staphylococcus/patogenicidade
10.
J Bacteriol ; 191(15): 4767-75, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19502411

RESUMO

Studies of the Staphylococcus aureus LytSR two-component regulatory system have led to the identification of the cid and lrg operons, which affect murein hydrolase activity, stationary-phase survival, antibiotic tolerance, and biofilm formation. The cid gene products enhance murein hydrolase activity and antibiotic tolerance whereas the lrg gene products inhibit these processes in a manner believed to be analogous to bacteriophage-encoded holins and antiholins, respectively. Importantly, these operons have been shown to play significant roles in biofilm development by controlling the release of genomic DNA, which then becomes an important structural component of the biofilm matrix. To determine the role of LytSR in biofilm development, a lytS knockout mutant was generated from a clinical S. aureus isolate (UAMS-1) and the effects on gene expression and biofilm formation were examined. As observed in laboratory isolates, LytSR was found to be required for lrgAB expression. Furthermore, the lytS mutant formed a more adherent biofilm than the wild-type and complemented strains. Consistent with previous findings, the increased adherence of the mutant was attributed to the increased prevalence of matrix-associated eDNA. Transcription profiling studies indicated that the lrgAB operon is the primary target of LytSR-mediated regulation but that this regulatory system also impacts expression of a wide variety of genes involved in basic metabolism. Overall, the results of these studies demonstrate that the LytSR two-component regulatory system plays an important role in S. aureus biofilm development, likely as a result of its direct influence on lrgAB expression.


Assuntos
Proteínas de Bactérias/fisiologia , Biofilmes/crescimento & desenvolvimento , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/genética , Fatores de Transcrição/fisiologia , Proteínas de Bactérias/genética , Northern Blotting , Regulação Bacteriana da Expressão Gênica/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas de Membrana/genética , Mutação/genética , Análise de Sequência com Séries de Oligonucleotídeos , Óperon/genética , Óperon/fisiologia , Fatores de Transcrição/genética , Transcrição Gênica/genética
11.
PLoS One ; 4(6): e5822, 2009 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-19513119

RESUMO

Recent studies have demonstrated a role for Staphylococcus aureus cidA-mediated cell lysis and genomic DNA release in biofilm adherence. The current study extends these findings by examining both temporal and additional genetic factors involved in the control of genomic DNA release and degradation during biofilm maturation. Cell lysis and DNA release were found to be critical for biofilm attachment during the initial stages of development and the released DNA (eDNA) remained an important matrix component during biofilm maturation. This study also revealed that an lrgAB mutant exhibits increased biofilm adherence and matrix-associated eDNA consistent with its proposed role as an inhibitor of cidA-mediated lysis. In flow-cell assays, both cid and lrg mutations had dramatic effects on biofilm maturation and tower formation. Finally, staphylococcal thermonuclease was shown to be involved in biofilm development as a nuc mutant formed a thicker biofilm containing increased levels of matrix-associated eDNA. Together, these findings suggest a model in which the opposing activities of the cid and lrg gene products control cell lysis and genomic DNA release during biofilm development, while staphylococcal thermonuclease functions to degrade the eDNA, possibly as a means to promote biofilm dispersal.


Assuntos
Biofilmes/crescimento & desenvolvimento , DNA/metabolismo , Staphylococcus aureus/metabolismo , Aderência Bacteriana , Desoxirribonuclease I/metabolismo , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Humanos , Nuclease do Micrococo/metabolismo , Mutação , Plasmídeos/metabolismo , Fatores de Tempo
12.
Proc Natl Acad Sci U S A ; 104(19): 8113-8, 2007 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-17452642

RESUMO

The Staphylococcus aureus cidA and lrgA genes have been shown to affect cell lysis under a variety of conditions during planktonic growth. It is hypothesized that these genes encode holins and antiholins, respectively, and may serve as molecular control elements of bacterial cell lysis. To examine the biological role of cell death and lysis, we studied the impact of the cidA mutation on biofilm development. Interestingly, this mutation had a dramatic impact on biofilm morphology and adherence. The cidA mutant (KB1050) biofilm exhibited a rougher appearance compared with the parental strain (UAMS-1) and was less adherent. Propidium iodide staining revealed that KB1050 accumulated more dead cells within the biofilm population relative to UAMS-1, indicative of reduced cell lysis. In agreement with this finding, quantitative real-time PCR experiments demonstrated the presence of 5-fold less genomic DNA in the KB1050 biofilm relative to UAMS-1. Furthermore, treatment of the UAMS-1 biofilm with DNase I caused extensive cell detachment, whereas similar treatment of the KB1050 biofilm had only a modest effect. These results demonstrate that cidA-controlled cell lysis plays a significant role during biofilm development and that released genomic DNA is an important structural component of S. aureus biofilm.


Assuntos
Biofilmes , DNA Bacteriano/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Óperon/fisiologia , Staphylococcus aureus/fisiologia , Aderência Bacteriana , Staphylococcus aureus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA