Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Hum Brain Mapp ; 45(7): e26697, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38726888

RESUMO

Diffusion MRI with free gradient waveforms, combined with simultaneous relaxation encoding, referred to as multidimensional MRI (MD-MRI), offers microstructural specificity in complex biological tissue. This approach delivers intravoxel information about the microstructure, local chemical composition, and importantly, how these properties are coupled within heterogeneous tissue containing multiple microenvironments. Recent theoretical advances incorporated diffusion time dependency and integrated MD-MRI with concepts from oscillating gradients. This framework probes the diffusion frequency, ω $$ \omega $$ , in addition to the diffusion tensor, D $$ \mathbf{D} $$ , and relaxation, R 1 $$ {R}_1 $$ , R 2 $$ {R}_2 $$ , correlations. A D ω - R 1 - R 2 $$ \mathbf{D}\left(\omega \right)-{R}_1-{R}_2 $$ clinical imaging protocol was then introduced, with limited brain coverage and 3 mm3 voxel size, which hinder brain segmentation and future cohort studies. In this study, we introduce an efficient, sparse in vivo MD-MRI acquisition protocol providing whole brain coverage at 2 mm3 voxel size. We demonstrate its feasibility and robustness using a well-defined phantom and repeated scans of five healthy individuals. Additionally, we test different denoising strategies to address the sparse nature of this protocol, and show that efficient MD-MRI encoding design demands a nuanced denoising approach. The MD-MRI framework provides rich information that allows resolving the diffusion frequency dependence into intravoxel components based on their D ω - R 1 - R 2 $$ \mathbf{D}\left(\omega \right)-{R}_1-{R}_2 $$ distribution, enabling the creation of microstructure-specific maps in the human brain. Our results encourage the broader adoption and use of this new imaging approach for characterizing healthy and pathological tissues.


Assuntos
Processamento de Imagem Assistida por Computador , Humanos , Adulto , Processamento de Imagem Assistida por Computador/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Masculino , Feminino , Imagem de Tensor de Difusão/métodos , Adulto Jovem
2.
Epilepsy Res ; 200: 107301, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38244466

RESUMO

OBJECTIVE: To assess the prevalence of brain abscesses as a confounding factor for the diagnosis of post-traumatic epilepsy (PTE) in a rat model of lateral fluid-percussion-induced (FPI) traumatic brain injury (TBI). METHODS: This retrospective study included 583 rats from 3 study cohorts collected over 2009-2022 in a single laboratory. The rats had undergone sham-operation or TBI using lateral FPI. Rats were implanted with epidural and/or intracerebral electrodes for electroencephalogram recordings. Brains were processed for histology to screen for abscess(es). In abscess cases, (a) unfolded cortical maps were constructed to assess the cortical location and area of the abscess, (b) the abscess tissue was Gram stained to determine the presence of gram-positive and gram-negative bacteria, and (c) immunostaining was performed to detect infiltrating neutrophils, T-lymphocytes, and glial cells as tissue biomarkers of inflammation. In vivo and/or ex vivo magnetic resonance images available from a subcohort of animals were reviewed to evaluate the presence of abscesses. Plasma samples available from a subcohort of rats were used for enzyme-linked immunosorbent assays to determine the levels of lipopolysaccharide (LPS) as a circulating biomarker for gram-negative bacteria. RESULTS: Brain abscesses were detected in 2.6% (15/583) of the rats (6 sham, 9 TBI). In histology, brain abscesses were characterized as vascularized encapsulated lesions filled with neutrophils and surrounded by microglia/macrophages and astrocytes. The abscesses were mainly located under the screw electrodes, support screws, or craniectomy. Epilepsy was diagnosed in 60% (9/15) of rats with an abscess (4 sham, 5 TBI). Of these, 67% (6/9) had seizure clusters. The average seizure frequency in abscess cases was 0.436 ± 0.281 seizures/d. Plasma LPS levels were comparable between rats with and without abscesses (p > 0.05). SIGNIFICANCE: Although rare, a brain abscess is a potential confounding factor for epilepsy diagnosis in animal models of structural epilepsies following brain surgery and electrode implantation, particularly if seizures occur in sham-operated experimental controls and/or in clusters.


Assuntos
Abscesso Encefálico , Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Epilepsia , Ratos , Animais , Epilepsia Pós-Traumática/patologia , Percussão/métodos , Estudos Retrospectivos , Antibacterianos , Lipopolissacarídeos , Ratos Sprague-Dawley , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Lesões Encefálicas Traumáticas/complicações , Convulsões/etiologia , Epilepsia/etiologia , Abscesso Encefálico/diagnóstico por imagem , Modelos Animais de Doenças
3.
Epilepsia ; 65(2): 511-526, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38052475

RESUMO

OBJECTIVE: This study was undertaken to assess reproducibility of the epilepsy outcome and phenotype in a lateral fluid percussion model of posttraumatic epilepsy (PTE) across three study sites. METHODS: A total of 525 adult male Sprague Dawley rats were randomized to lateral fluid percussion-induced brain injury (FPI) or sham operation. Of these, 264 were assigned to magnetic resonance imaging (MRI cohort, 43 sham, 221 traumatic brain injury [TBI]) and 261 to electrophysiological follow-up (EEG cohort, 41 sham, 220 TBI). A major effort was made to harmonize the rats, materials, equipment, procedures, and monitoring systems. On the 7th post-TBI month, rats were video-EEG monitored for epilepsy diagnosis. RESULTS: A total of 245 rats were video-EEG phenotyped for epilepsy on the 7th postinjury month (121 in MRI cohort, 124 in EEG cohort). In the whole cohort (n = 245), the prevalence of PTE in rats with TBI was 22%, being 27% in the MRI and 18% in the EEG cohort (p > .05). Prevalence of PTE did not differ between the three study sites (p > .05). The average seizure frequency was .317 ± .725 seizures/day at University of Eastern Finland (UEF; Finland), .085 ± .067 at Monash University (Monash; Australia), and .299 ± .266 at University of California, Los Angeles (UCLA; USA; p < .01 as compared to Monash). The average seizure duration did not differ between UEF (104 ± 48 s), Monash (90 ± 33 s), and UCLA (105 ± 473 s; p > .05). Of the 219 seizures, 53% occurred as part of a seizure cluster (≥3 seizures/24 h; p >.05 between the study sites). Of the 209 seizures, 56% occurred during lights-on period and 44% during lights-off period (p > .05 between the study sites). SIGNIFICANCE: The PTE phenotype induced by lateral FPI is reproducible in a multicenter design. Our study supports the feasibility of performing preclinical multicenter trials in PTE to increase statistical power and experimental rigor to produce clinically translatable data to combat epileptogenesis after TBI.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Epilepsia , Animais , Masculino , Ratos , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Modelos Animais de Doenças , Epilepsia/etiologia , Epilepsia Pós-Traumática/etiologia , Epilepsia Pós-Traumática/patologia , Percussão , Fenótipo , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Convulsões
4.
Epilepsy Res ; 199: 107263, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056191

RESUMO

OBJECTIVE: Project 1 of the Preclinical Multicenter Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx) consortium aims to identify preclinical biomarkers for antiepileptogenic therapies following traumatic brain injury (TBI). The international participating centers in Finland, Australia, and the United States have made a concerted effort to ensure protocol harmonization. Here, we evaluate the success of harmonization process by assessing the timing, coverage, and performance between the study sites. METHOD: We collected data on animal housing conditions, lateral fluid-percussion injury model production, postoperative care, mortality, post-TBI physiological monitoring, timing of blood sampling and quality, MR imaging timing and protocols, and duration of video-electroencephalography (EEG) follow-up using common data elements. Learning effect in harmonization was assessed by comparing procedural accuracy between the early and late stages of the project. RESULTS: The animal housing conditions were comparable between the study sites but the postoperative care procedures varied. Impact pressure, duration of apnea, righting reflex, and acute mortality differed between the study sites (p < 0.001). The severity of TBI on D2 post TBI assessed using the composite neuroscore test was similar between the sites, but recovery of acute somato-motor deficits varied (p < 0.001). A total of 99% of rats included in the final cohort in UEF, 100% in Monash, and 79% in UCLA had blood samples taken at all time points. The timing of sampling differed on day (D)2 (p < 0.05) but not D9 (p > 0.05). Plasma quality was poor in 4% of the samples in UEF, 1% in Monash and 14% in UCLA. More than 97% of the final cohort were MR imaged at all timepoints in all study sites. The timing of imaging did not differ on D2 and D9 (p > 0.05), but varied at D30, 5 months, and ex vivo timepoints (p < 0.001). The percentage of rats that completed the monthly high-density video-EEG follow-up and the duration of video-EEG recording on the 7th post-injury month used for seizure detection for diagnosis of post-traumatic epilepsy differed between the sites (p < 0.001), yet the prevalence of PTE (UEF 21%, Monash 22%, UCLA 23%) was comparable between the sites (p > 0.05). A decrease in acute mortality and increase in plasma quality across time reflected a learning effect in the TBI production and blood sampling protocols. SIGNIFICANCE: Our study is the first demonstration of the feasibility of protocol harmonization for performing powered preclinical multi-center trials for biomarker and therapy discovery of post-traumatic epilepsy.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Epilepsia , Animais , Ratos , Biomarcadores , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Modelos Animais de Doenças , Epilepsia/etiologia , Epilepsia/diagnóstico , Epilepsia Pós-Traumática/etiologia , Epilepsia Pós-Traumática/tratamento farmacológico , Convulsões , Estudos Multicêntricos como Assunto
5.
bioRxiv ; 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37987005

RESUMO

Diffusion MRI with free gradient waveforms, combined with simultaneous relaxation encoding, referred to as multidimensional MRI (MD-MRI), offers microstructural specificity in complex biological tissue. This approach delivers intravoxel information about the microstructure, local chemical composition, and importantly, how these properties are coupled within heterogeneous tissue containing multiple microenvironments. Recent theoretical advances incorporated diffusion time dependency and integrated MD-MRI with concepts from oscillating gradients. This framework probes the diffusion frequency, ω, in addition to the diffusion tensor, D, and relaxation, R1, R2, correlations. A D(ω)-R1-R2 clinical imaging protocol was then introduced, with limited brain coverage and 3 mm3 voxel size, which hinder brain segmentation and future cohort studies. In this study, we introduce an efficient, sparse in vivo MD-MRI acquisition protocol providing whole brain coverage at 2 mm3 voxel size. We demonstrate its feasibility and robustness using a well-defined phantom and repeated scans of five healthy individuals. Additionally, we test different denoising strategies to address the sparse nature of this protocol, and show that efficient MD-MRI encoding design demands a nuanced denoising approach. The MD-MRI framework provides rich information that allows resolving the diffusion frequency dependence into intravoxel components based on their D(ω)-R1-R2 distribution, enabling the creation of microstructure-specific maps in the human brain. Our results encourage the broader adoption and use of this new imaging approach for characterizing healthy and pathological tissues.

6.
Epilepsy Res ; 195: 107201, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37562146

RESUMO

Preclinical MRI studies have been utilized for the discovery of biomarkers that predict post-traumatic epilepsy (PTE). However, these single site studies often lack statistical power due to limited and homogeneous datasets. Therefore, multisite studies, such as the Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx), are developed to create large, heterogeneous datasets that can lead to more statistically significant results. EpiBioS4Rx collects preclinical data internationally across sites, including the United States, Finland, and Australia. However, in doing so, there are robust normalization and harmonization processes that are required to obtain statistically significant and generalizable results. This work describes the tools and procedures used to harmonize multisite, multimodal preclinical imaging data acquired by EpiBioS4Rx. There were four main harmonization processes that were utilized, including file format harmonization, naming convention harmonization, image coordinate system harmonization, and diffusion tensor imaging (DTI) metrics harmonization. By using Python tools and bash scripts, the file formats, file names, and image coordinate systems are harmonized across all the sites. To harmonize DTI metrics, values are estimated for each voxel in an image to generate a histogram representing the whole image. Then, the Quantitative Imaging Toolkit (QIT) modules are utilized to scale the mode to a value of one and depict the subsequent harmonized histogram. The standardization of file formats, naming conventions, coordinate systems, and DTI metrics are qualitatively assessed. The histograms of the DTI metrics were generated for all the individual rodents per site. For inter-site analysis, an average of the individual scans was calculated to create a histogram that represents each site. In order to ensure the analysis can be run at the level of individual animals, the sham and TBI cohort were analyzed separately, which depicted the same harmonization factor. The results demonstrate that these processes qualitatively standardize the file formats, naming conventions, coordinate systems, and DTI metrics of the data. This assists in the ability to share data across the study, as well as disseminate tools that can help other researchers to strengthen the statistical power of their studies and analyze data more cohesively.


Assuntos
Epilepsia Pós-Traumática , Epilepsia , Animais , Epilepsia Pós-Traumática/tratamento farmacológico , Imagem de Tensor de Difusão , Imageamento por Ressonância Magnética , Biomarcadores , Encéfalo/diagnóstico por imagem
7.
Magn Reson Med ; 90(2): 708-721, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37145027

RESUMO

PURPOSE: Recent studies indicate that T1 in white matter (WM) is influenced by fiber orientation in B0 . The purpose of the study was to investigate the interrelationships between axon fiber orientation in corpus callosum (CC) and T1 relaxation time in humans in vivo as well as in rat brain ex vivo. METHODS: Volunteers were scanned for relaxometric and diffusion MRI at 3 T and 7 T. Angular T1 plots from WM were computed using fractional anisotropy and fiber-to-field-angle maps. T1 and fiber-to-field angle were measured in five sections of CC to estimate the effects of inherently varying fiber orientations on T1 within the same tracts in vivo. Ex vivo rat-brain preparation encompassing posterior CC was rotated in B0 and T1 , and diffusion MRI images acquired at 9.4 T. T1 angular plots were determined at several rotation angles in B0 . RESULTS: Angular T1 plots from global WM provided reference for estimated fiber orientation-linked T1 changes within CC. In anterior midbody of CC in vivo, where small axons are dominantly present, a shift in axon orientation is accompanied by a change in T1 , matching that estimated from WM T1 data. In CC, where large and giant axons are numerous, the measured T1 change is about 2-fold greater than the estimated one. Ex vivo rotation of the same midsagittal CC region of interest produced angular T1 plots at 9.4 T, matching those observed at 7 T in vivo. CONCLUSION: These data causally link axon fiber orientation in B0 to the T1 relaxation anisotropy in WM.


Assuntos
Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Corpo Caloso/diagnóstico por imagem , Anisotropia , Axônios , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem
8.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769143

RESUMO

Traumatic brain injury (TBI) causes 10-20% of structural epilepsies and 5% of all epilepsies. The lack of prognostic biomarkers for post-traumatic epilepsy (PTE) is a major obstacle to the development of anti-epileptogenic treatments. Previous studies revealed TBI-induced alterations in blood microRNA (miRNA) levels, and patients with epilepsy exhibit dysregulation of blood miRNAs. We hypothesized that acutely altered plasma miRNAs could serve as prognostic biomarkers for brain damage severity and the development of PTE. To investigate this, epileptogenesis was induced in adult male Sprague Dawley rats by lateral fluid-percussion-induced TBI. Epilepsy was defined as the occurrence of at least one unprovoked seizure during continuous 1-month video-electroencephalography monitoring in the sixth post-TBI month. Cortical pathology was analyzed by magnetic resonance imaging on day 2 (D2), D7, and D21, and by histology 6 months post-TBI. Small RNA sequencing was performed from tail-vein plasma samples on D2 and D9 after TBI (n = 16, 7 with and 9 without epilepsy) or sham operation (n = 4). The most promising miRNA biomarker candidates were validated by droplet digital polymerase chain reaction in a validation cohort of 115 rats (8 naïve, 17 sham, and 90 TBI rats [21 with epilepsy]). These included 7 brain-enriched plasma miRNAs (miR-434-3p, miR-9a-3p, miR-136-3p, miR-323-3p, miR-124-3p, miR-212-3p, and miR-132-3p) that were upregulated on D2 post-TBI (p < 0.001 for all compared with naïve rats). The acute post-TBI plasma miRNA profile did not predict the subsequent development of PTE or PTE severity. Plasma miRNA levels, however, predicted the cortical pathology severity on D2 (Spearman ρ = 0.345-0.582, p < 0.001), D9 (ρ = 0.287-0.522, p < 0.001-0.01), D21 (ρ = 0.269-0.581, p < 0.001-0.05) and at 6 months post-TBI (ρ = 0.230-0.433, p < 0.001-0.05). We found that the levels of 6 of 7 miRNAs also reflected mild brain injury caused by the craniotomy during sham operation (ROC AUC 0.76-0.96, p < 0.001-0.05). In conclusion, our findings revealed that increased levels of neuronally enriched miRNAs in the blood circulation after TBI reflect the extent of cortical injury in the brain but do not predict PTE development.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , MicroRNA Circulante , Epilepsia , MicroRNAs , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas/complicações , MicroRNAs/genética , Epilepsia/genética , Biomarcadores , Modelos Animais de Doenças
9.
Sci Rep ; 13(1): 2219, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36755032

RESUMO

Our study explores the potential of conventional and advanced diffusion MRI techniques including diffusion tensor imaging (DTI), and single-shell 3-tissue constrained spherical deconvolution (SS3T-CSD) to investigate complex microstructural changes following severe traumatic brain injury in rats at a chronic phase. Rat brains after sham-operation or lateral fluid percussion (LFP) injury were scanned ex vivo in a 9.4 T scanner. Our region-of-interest-based approach of tensor-, and SS3T-CSD derived fixel-, 3-tissue signal fraction maps were sensitive to changes in both white matter (WM) and grey matter (GM) areas. Tensor-based measures, such as fractional anisotropy (FA) and radial diffusivity (RD), detected more changes in WM and GM areas as compared to fixel-based measures including apparent fiber density (AFD), peak FOD amplitude and primary fiber bundle density, while 3-tissue signal fraction maps revealed distinct changes in WM, GM, and phosphate-buffered saline (PBS) fractions highlighting the complex tissue microstructural alterations post-trauma. Track-weighted imaging demonstrated changes in track morphology including reduced curvature and average pathlength distal from the primary lesion in severe TBI rats. In histological analysis, changes in the diffusion MRI measures could be associated to decreased myelin density, loss of myelinated axons, and increased cellularity, revealing progressive microstructural alterations in these brain areas five months after injury. Overall, this study highlights the use of combined conventional and advanced diffusion MRI measures to obtain more precise insights into the complex tissue microstructural alterations in chronic phase of severe brain injury.


Assuntos
Lesões Encefálicas Traumáticas , Substância Branca , Ratos , Animais , Imagem de Tensor de Difusão/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
10.
Int J Mol Sci ; 23(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36499527

RESUMO

Plasma neurofilament light chain (NF-L) levels were assessed as a diagnostic biomarker for traumatic brain injury (TBI) and as a prognostic biomarker for somatomotor recovery, cognitive decline, and epileptogenesis. Rats with severe TBI induced by lateral fluid-percussion injury (n = 26, 13 with and 13 without epilepsy) or sham-operation (n = 8) were studied. During a 6-month follow-up, rats underwent magnetic resonance imaging (MRI) (day (D) 2, D7, and D21), composite neuroscore (D2, D6, and D14), Morris-water maze (D35−D39), and a 1-month-long video-electroencephalogram to detect unprovoked seizures during the 6th month. Plasma NF-L levels were assessed using a single-molecule assay at baseline (i.e., naïve animals) and on D2, D9, and D178 after TBI or a sham operation. Plasma NF-L levels were 483-fold higher on D2 (5072.0 ± 2007.0 pg/mL), 89-fold higher on D9 (930.3 ± 306.4 pg/mL), and 3-fold higher on D176 32.2 ± 8.9 pg/mL after TBI compared with baseline (10.5 ± 2.6 pg/mL; all p < 0.001). Plasma NF-L levels distinguished TBI rats from naïve animals at all time-points examined (area under the curve [AUC] 1.0, p < 0.001), and from sham-operated controls on D2 (AUC 1.0, p < 0.001). Plasma NF-L increases on D2 were associated with somatomotor impairment severity (ρ = −0.480, p < 0.05) and the cortical lesion extent in MRI (ρ = 0.401, p < 0.05). Plasma NF-L increases on D2 or D9 were associated with the cortical lesion extent in histologic sections at 6 months post-injury (ρ = 0.437 for D2; ρ = 0.393 for D9, p < 0.05). Plasma NF-L levels, however, did not predict somatomotor recovery, cognitive decline, or epileptogenesis (p > 0.05). Plasma NF-L levels represent a promising noninvasive translational diagnostic biomarker for acute TBI and a prognostic biomarker for post-injury somatomotor impairment and long-term structural brain damage.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Disfunção Cognitiva , Animais , Ratos , Ratos Sprague-Dawley , Prognóstico , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/patologia , Convulsões/complicações , Lesões Encefálicas/patologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/complicações , Modelos Animais de Doenças
11.
Biomedicines ; 10(11)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36359242

RESUMO

It is necessary to develop reliable biomarkers for epileptogenesis and cognitive impairment after traumatic brain injury when searching for novel antiepileptogenic and cognition-enhancing treatments. We hypothesized that a multiparametric magnetic resonance imaging (MRI) analysis along the septotemporal hippocampal axis could predict the development of post-traumatic epilepsy and cognitive impairment. We performed quantitative T2 and T2* MRIs at 2, 7 and 21 days, and diffusion tensor imaging at 7 and 21 days after lateral fluid-percussion injury in male rats. Morris water maze tests conducted between 35-39 days post-injury were used to diagnose cognitive impairment. One-month-long continuous video-electroencephalography monitoring during the 6th post-injury month was used to diagnose epilepsy. Single-parameter and regularized multiple linear regression models were able to differentiate between sham-operated and brain-injured rats. In the ipsilateral hippocampus, differentiation between the groups was achieved at most septotemporal locations (cross-validated area under the receiver operating characteristic curve (AUC) 1.0, 95% confidence interval 1.0-1.0). In the contralateral hippocampus, the highest differentiation was evident in the septal pole (AUC 0.92, 95% confidence interval 0.82-0.97). Logistic regression analysis of parameters imaged at 3.4 mm from the contralateral hippocampus's temporal end differentiated between the cognitively impaired rats and normal rats (AUC 0.72, 95% confidence interval 0.55-0.84). Neither single nor multiparametric approaches could identify the rats that would develop post-traumatic epilepsy. Multiparametric MRI analysis of the hippocampus can be used to identify cognitive impairment after an experimental traumatic brain injury. This information can be used to select subjects for preclinical trials of cognition-improving interventions.

12.
Biomedicines ; 10(9)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36140398

RESUMO

Brain atrophy induced by traumatic brain injury (TBI) progresses in parallel with epileptogenesis over time, and thus accurate placement of intracerebral electrodes to monitor seizure initiation and spread at the chronic postinjury phase is challenging. We evaluated in adult male Sprague Dawley rats whether adjusting atlas-based electrode coordinates on the basis of magnetic resonance imaging (MRI) increases electrode placement accuracy and the effect of chronic electrode implantations on TBI-induced brain atrophy. One group of rats (EEG cohort) was implanted with two intracortical (anterior and posterior) and a hippocampal electrode right after TBI to target coordinates calculated using a rat brain atlas. Another group (MRI cohort) was implanted with the same electrodes, but using T2-weighted MRI to adjust the planned atlas-based 3D coordinates of each electrode. Histological analysis revealed that the anterior cortical electrode was in the cortex in 83% (25% in targeted layer V) of the EEG cohort and 76% (31%) of the MRI cohort. The posterior cortical electrode was in the cortex in 40% of the EEG cohort and 60% of the MRI cohort. Without MRI-guided adjustment of electrode tip coordinates, 58% of the posterior cortical electrodes in the MRI cohort will be in the lesion cavity, as revealed by simulated electrode placement on histological images. The hippocampal electrode was accurately placed in 82% of the EEG cohort and 86% of the MRI cohort. Misplacement of intracortical electrodes related to their rostral shift due to TBI-induced cortical and hippocampal atrophy and caudal retraction of the brain, and was more severe ipsilaterally than contralaterally (p < 0.001). Total lesion area in cortical subfields targeted by the electrodes (primary somatosensory cortex, visual cortex) was similar between cohorts (p > 0.05). MRI-guided adjustment of coordinates for electrodes improved the success rate of intracortical electrode tip placement nearly to that at the acute postinjury phase (68% vs. 62%), particularly in the posterior brain, which exhibited the most severe postinjury atrophy. Overall, MRI-guided electrode implantation improved the quality and interpretation of the origin of EEG-recorded signals.

13.
Biomedicines ; 10(5)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35625875

RESUMO

Objectives: We investigated whether seizure susceptibility increases over weeks−months after experimental traumatic brain injury (TBI), and whether seizure susceptibility in rats predicts the development of post-traumatic epilepsy (PTE) or epileptiform activity. We further investigated whether rats develop chronic sleep disturbance after TBI, and whether sleep disturbance parameters­alone or in combination with pentylenetetrazol (PTZ) test parameters­could serve as novel biomarkers for the development of post-traumatic epileptogenesis. Methods: TBI was induced in adult male Sprague-Dawley rats with lateral fluid-percussion injury. Sham-operated experimental controls underwent craniectomy without exposure to an impact force. Seizure susceptibility was tested with a PTZ test (30 mg/kg, intraperitoneally) on day (D) 30, D60, D90, and D180 after TBI (n = 28) or sham operation (n = 16) under video electroencephalogram (vEEG). In the 7th post-injury month, rats underwent continuous vEEG monitoring to detect spontaneous seizures and assess sleep disturbances. At the end of the experiments, rats were perfused for brain histology. Results: In the TBI group, the percentage of rats with PTZ-induced seizures increased over time (adjusted p < 0.05 compared with D30). Combinations of three PTZ test parameters (latency to the first epileptiform discharge (ED), number of EDs, and number of PTZ-induced seizures) survived the leave-one-out validation for differentiating rats with or without epileptiform activity, indicating an area under the receiver operating curve (AUC) of 0.743 (95% CI 0.472−0.992, p = 0.05) with a misclassification rate of 36% on D90, and an AUC of 0.752 (95% CI 0.483−0.929, p < 0.05) with a misclassification rate of 32% on D180. Sleep analysis revealed that the number of transitions to N3 or rapid eye movement (REM) sleep, along with the total number of transitions, was increased in the TBI group during the lights-on period (all p < 0.05). The sleep fragmentation index during the lights-on period was greater in the TBI rats than in sham-operated rats (p < 0.05). A combination of sleep parameters showed promise as diagnostic biomarkers of prior TBI, with an AUC of 0.792 (95% CI 0.549−0.934, p < 0.01) and a misclassification rate of 28%. Rats with epilepsy or any epileptiform activity had more transitions from N3 to the awake stage (p < 0.05), and the number of N3−awake transitions differentiated rats with or without epileptiform activity, with an AUC of 0.857 (95% CI 0.651−1.063, p < 0.01). Combining sleep parameters with PTZ parameters did not improve the biomarker performance. Significance: This is the first attempt to monitor the evolution of seizure susceptibility over months in a well-described rat model of PTE. Our data suggest that assessment of seizure susceptibility and sleep disturbance can provide diagnostic biomarkers of prior TBI and prognostic biomarkers of post-traumatic epileptogenesis.

14.
Epilepsia ; 63(7): 1849-1861, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35451496

RESUMO

OBJECTIVE: This study was undertaken to identify prognostic biomarkers for posttraumatic epileptogenesis derived from parameters related to the hippocampal position and orientation. METHODS: Data were derived from two preclinical magnetic resonance imaging (MRI) follow-up studies: EPITARGET (156 rats) and Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx; University of Eastern Finland cohort, 43 rats). Epileptogenesis was induced with lateral fluid percussion-induced traumatic brain injury (TBI) in adult male Sprague Dawley rats. In the EPITARGET cohort, T 2 ∗ -weighted MRI was performed at 2, 7, and 21 days and in the EpiBioS4Rx cohort at 2, 9, and 30 days and 5 months post-TBI. Both hippocampi were segmented using convolutional neural networks. The extracted segmentation mask was used for a geometric construction, extracting 39 parameters that described the position and orientation of the left and right hippocampus. In each cohort, we assessed the parameters as prognostic biomarkers for posttraumatic epilepsy (PTE) both individually, using repeated measures analysis of variance, and in combination, using random forest classifiers. RESULTS: The extracted parameters were highly effective in discriminating between sham-operated and TBI rats in both the EPITARGET and EpiBioS4Rx cohorts at all timepoints (t; balanced accuracy > .9). The most discriminating parameter was the inclination of the hippocampus ipsilateral to the lesion at t = 2 days and the volumes at t ≥ 7 days after TBI. Furthermore, in the EpiBioS4Rx cohort, we could effectively discriminate epileptogenic from nonepileptogenic animals with a longer MRI follow-up, at t = 150 days (area under the curve = .78, balanced accuracy = .80, p = .0050), based on the orientation of both hippocampi. We found that the ipsilateral hippocampus rotated outward on the horizontal plane, whereas the contralateral hippocampus rotated away from the vertical direction. SIGNIFICANCE: We demonstrate that assessment of TBI-induced hippocampal deformation by clinically translatable MRI methodologies detects subjects with prior TBI as well as those at high risk of PTE, paving the way toward subject stratification for antiepileptogenesis studies.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Epilepsia , Animais , Biomarcadores , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Modelos Animais de Doenças , Epilepsia/diagnóstico , Epilepsia Pós-Traumática/diagnóstico por imagem , Epilepsia Pós-Traumática/tratamento farmacológico , Epilepsia Pós-Traumática/etiologia , Hipocampo/diagnóstico por imagem , Humanos , Masculino , Percussão , Prognóstico , Ratos , Ratos Sprague-Dawley
15.
Front Neurol ; 13: 820267, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250823

RESUMO

Registration-based methods are commonly used in the automatic segmentation of magnetic resonance (MR) brain images. However, these methods are not robust to the presence of gross pathologies that can alter the brain anatomy and affect the alignment of the atlas image with the target image. In this work, we develop a robust algorithm, MU-Net-R, for automatic segmentation of the normal and injured rat hippocampus based on an ensemble of U-net-like Convolutional Neural Networks (CNNs). MU-Net-R was trained on manually segmented MR images of sham-operated rats and rats with traumatic brain injury (TBI) by lateral fluid percussion. The performance of MU-Net-R was quantitatively compared with methods based on single and multi-atlas registration using MR images from two large preclinical cohorts. Automatic segmentations using MU-Net-R and multi-atlas registration were of excellent quality, achieving cross-validated Dice scores above 0.90 despite the presence of brain lesions, atrophy, and ventricular enlargement. In contrast, the performance of single-atlas segmentation was unsatisfactory (cross-validated Dice scores below 0.85). Interestingly, the registration-based methods were better at segmenting the contralateral than the ipsilateral hippocampus, whereas MU-Net-R segmented the contralateral and ipsilateral hippocampus equally well. We assessed the progression of hippocampal damage after TBI by using our automatic segmentation tool. Our data show that the presence of TBI, time after TBI, and whether the hippocampus was ipsilateral or contralateral to the injury were the parameters that explained hippocampal volume.

16.
Neurobiol Dis ; 162: 105566, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838665

RESUMO

Temporal lobe epilepsy (TLE) is the most prevalent type of epilepsy in adults; it often starts in infancy or early childhood. Although TLE is primarily considered to be a grey matter pathology, a growing body of evidence links this disease with white matter abnormalities. In this study, we explore the impact of TLE onset and progression in the immature brain on white matter integrity and development utilising the rat model of Li-pilocarpine-induced TLE at the 12th postnatal day (P). Diffusion tensor imaging (DTI) and Black-Gold II histology uncovered disruptions in major white matter tracks (corpus callosum, internal and external capsules, and deep cerebral white matter) spreading through the whole brain at P28. These abnormalities were mostly not present any longer at three months after TLE induction, with only limited abnormalities detectable in the external capsule and deep cerebral white matter. Relaxation Along a Fictitious Field in the rotating frame of rank 4 indicated that white matter changes observed at both timepoints, P28 and P72, are consistent with decreased myelin content. The animals affected by TLE-induced white matter abnormalities exhibited increased functional connectivity between the thalamus and medial prefrontal and somatosensory cortex in adulthood. Furthermore, histological analyses of additional animal groups at P15 and P18 showed only mild changes in white matter integrity, suggesting a gradual age-dependent impact of TLE progression. Taken together, TLE progression in the immature brain distorts white matter development with a peak around postnatal day 28, followed by substantial recovery in adulthood. This developmental delay might give rise to cognitive and behavioural comorbidities typical for early-onset TLE.


Assuntos
Epilepsia do Lobo Temporal , Estado Epiléptico , Substância Branca , Adulto , Animais , Pré-Escolar , Imagem de Tensor de Difusão , Epilepsia do Lobo Temporal/patologia , Humanos , Bainha de Mielina/patologia , Ratos , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
17.
Epilepsia ; 62(8): 1852-1864, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34245005

RESUMO

OBJECTIVE: To identify magnetic resonance imaging (MRI) biomarkers for post-traumatic epilepsy. METHODS: The EPITARGET (Targets and biomarkers for antiepileptogenesis, epitarget.eu) animal cohort completing T2 relaxation and diffusion tensor MRI follow-up and 1-month-long video-electroencephalography monitoring included 98 male Sprague-Dawley rats with traumatic brain injury and 18 controls. T2 imaging was performed on day (D) 2, D7, and D21 and diffusion tensor imaging (DTI) on D7 and D21 using a 7-Tesla Bruker PharmaScan MRI scanner. The mean and standard deviation (SD) of the T2 relaxation rate, multiple diffusivity measures, and diffusion anisotropy at each time-point within the ventroposterolateral and ventroposteromedial thalamus were used as predictor variables in multi-variable logistic regression models to distinguish rats with and without epilepsy. RESULTS: Twenty-nine percent (28/98) of the rats with traumatic brain injury (TBI) developed epilepsy. The best-performing logistic regression model utilized the D2 and D7 T2 relaxation time as well as the D7 diffusion tensor data. The model distinguished rats with and without epilepsy (Bonferroni-corrected p-value < .001) with a cross-validated concordance statistic of 0.74 (95% confidence interval [CI] 0.60-0.84). In a cross-validated classification test, the model exhibited 54% sensitivity and 91% specificity, enriching the epilepsy rate within the study population from the expected 29% to 71%. A model using the D2 T2 data only resulted in a 73% enriched epilepsy rate (regression p-value .007, cross-validated concordance 0.70, 95% CI 0.56-0.80, sensitivity 29%, specificity 96%). SIGNIFICANCE: An MRI parameter set reporting on acute and subacute neuropathologic changes common to experimental and human TBI presents a diagnostic biomarker for post-traumatic epileptogenesis. Significant enrichment of the study population was achieved even when using a single time-point measurement, producing an expected epilepsy rate of 73%.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia , Animais , Biomarcadores , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Imagem de Tensor de Difusão , Modelos Animais de Doenças , Epilepsia/diagnóstico por imagem , Epilepsia/etiologia , Humanos , Masculino , Prognóstico , Ratos , Ratos Sprague-Dawley , Tálamo/diagnóstico por imagem
18.
NMR Biomed ; 34(2): e4438, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33219598

RESUMO

The primary lesion arising from the initial insult after traumatic brain injury (TBI) triggers a cascade of secondary tissue damage, which may also progress to connected brain areas in the chronic phase. The aim of this study was, therefore, to investigate variations in the susceptibility distribution related to these secondary tissue changes in a rat model after severe lateral fluid percussion injury. We compared quantitative susceptibility mapping (QSM) and R2 * measurements with histological analyses in white and grey matter areas outside the primary lesion but connected to the lesion site. We demonstrate that susceptibility variations in white and grey matter areas could be attributed to reduction in myelin, accumulation of iron and calcium, and gliosis. QSM showed quantitative changes attributed to secondary damage in areas located rostral to the lesion site that appeared normal in R2 * maps. However, combination of QSM and R2 * was informative in disentangling the underlying tissue changes such as iron accumulation, demyelination, or calcifications. Therefore, combining QSM with R2 * measurement can provide a more detailed assessment of tissue changes and may pave the way for improved diagnosis of TBI, and several other complex neurodegenerative diseases.


Assuntos
Química Encefálica , Dano Encefálico Crônico/diagnóstico por imagem , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Neuroimagem/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Animais , Dano Encefálico Crônico/etiologia , Lesões Encefálicas Traumáticas/complicações , Mapeamento Encefálico/métodos , Cálcio/análise , Contagem de Células , Corpo Caloso/química , Corpo Caloso/diagnóstico por imagem , Gliose/diagnóstico por imagem , Substância Cinzenta/química , Substância Cinzenta/diagnóstico por imagem , Ferro/análise , Masculino , Bainha de Mielina/química , Ratos , Ratos Sprague-Dawley , Substância Branca/química , Substância Branca/diagnóstico por imagem
19.
J Neurotrauma ; 37(23): 2580-2594, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32349620

RESUMO

Prognostic biomarkers for post-injury outcome are necessary for the development of neuroprotective and antiepileptogenic treatments for traumatic brain injury (TBI). We hypothesized that T2 relaxation magnetic resonance imaging (MRI) predicts the progression of perilesional cortical pathology and epileptogenesis. The EPITARGET animal cohort used for MRI analysis included 120 adult male Sprague-Dawley rats with TBI induced by lateral fluid-percussion injury and 24 sham-operated controls. T2 MRI was performed at days 2, 7, and 21 post-TBI. The lesioned cortex was outlined, and the T2 value of each imaging voxel within the lesion area was scored using a five-grade pathology classification. Analysis of 1-month video-electroencephalography recordings initiated 5 months post-TBI indicated that 27% (31 of 114) of the animals with TBI developed epilepsy. Multiple linear regression analysis indicated that T2-based classification of lesion volume at day 2 and day 7 post-TBI explained the necrotic lesion volume with greatly increased T2 (>102 ms) at day 21 post-TBI (F(13,103) = 52.5; p < 0.001; R2 = 0.87; adjusted R2 = 0.85). The volume of moderately increased (78-102 ms) T2 at day 7 post-TBI predicted the evolution of large (>12 mm3) cortical lesions (area under the curve, 0.92; p < 0.001; cutoff, 1.9 mm3; false positive rate, 0.10; true positive rate, 0.62). Logistic regression analysis, however, showed that the different severities of T2 lesion volumes at days 2, 7, and 21 post-TBI did not explain the development of epilepsy (χ2(18,95) = 18.4; p = 0.427). In addition, the location of the T2 abnormality within the cortex did not correlate with epileptogenesis. A single measurement of T2 relaxation MRI in the acute post-TBI phase is useful for identifying post-TBI subjects at highest risk of developing large cortical lesions, and thus, in the greatest need of neuroprotective therapies after TBI, but not the development of post-traumatic epilepsy.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Córtex Cerebral/patologia , Epilepsia Pós-Traumática/patologia , Imageamento por Ressonância Magnética/métodos , Animais , Modelos Animais de Doenças , Masculino , Prognóstico , Ratos , Ratos Sprague-Dawley
20.
Epilepsy Res ; 150: 46-57, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30641351

RESUMO

Preclinical imaging studies of posttraumatic epileptogenesis (PTE) have largely been proof-of-concept studies with limited animal numbers, and thus lack the statistical power for biomarker discovery. Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx) is a pioneering multicenter trial investigating preclinical imaging biomarkers of PTE. EpiBios4Rx faced the issue of harmonizing the magnetic resonance imaging (MRI) procedures and imaging data metrics prior to its execution. We present here the harmonization process between three preclinical MRI facilities at the University of Eastern Finland (UEF), the University of Melbourne (Melbourne), and the University of California, Los Angeles (UCLA), and evaluate the uniformity of the obtained MRI data. Adult, male rats underwent a lateral fluid percussion injury (FPI) and were followed by MRI 2 days, 9 days, 1 month, and 5 months post-injury. Ex vivo scans of fixed brains were conducted 7 months post-injury as an end point follow-up. Four MRI modalities were used: T2-weighted imaging, multi-gradient-echo imaging, diffusion-weighted imaging, and magnetization transfer imaging, and acquisition parameters for each modality were tailored to account for the different field strengths (4.7 T and 7 T) and different MR hardwares used at the three participating centers. Pilot data collection resulted in comparable image quality across sites. In interim analysis (of data obtained by April 30, 2018), the within-site variation of the quantified signal properties was low, while some differences between sites remained. In T2-weighted images the signal-to-noise ratios were high at each site, being 35 at UEF, 48 at Melbourne, and 32 at UCLA (p < 0.05). The contrast-to-noise ratios were similar between the sites (9, 10, and 8, respectively). Magnetization transfer ratio maps had identical white matter/ gray matter contrast between the sites, with white matter showing 15% higher MTR than gray matter despite different absolute MTR values (MTR both in white and gray matter was 3% lower in Melbourne than at UEF, p < 0.05). Diffusion-weighting yielded different degrees of signal attenuation across sites, being 83% at UEF, 76% in Melbourne, and 80% at UCLA (p < 0.05). Fractional anisotropy values differed as well, being 0.81 at UEF, 0.73 in Melbourne, and 0.84 at UCLA (p < 0.05). The obtained values in sham animals showed low variation within each site and no change over time, suggesting high repeatability of the measurements. Quality control scans with phantoms demonstrated stable hardware performance over time. Timing of post-TBI scans was designed to target specific phases of the dynamic pathology, and the execution at different centers was highly accurate. Besides a few outliers, the 2-day scans were done within an hour from the target time point. At day 9, most animals were scanned within an hour from the target time point, and all but 2 outliers within 24 h from the target. The 1-month post-TBI scans were done within 31 ± 3 days. MRI procedures and animal physiology during scans were similar between the sites. Taken together, the 10% inter-site difference in FA and 3% difference in MTR values should be included into analysis as a covariate or balanced out in post-processing in order to detect disease-related effects on brain structure at the same scale. However, for a MRI biomarker for post-traumatic epileptogenesis to have realistic chance of being successfully translated to validation in clinical trials, it would need to be a robust TBI-induced structural change which tolerates the inter-site methodological variability described here.


Assuntos
Lesões Encefálicas Traumáticas/complicações , Encéfalo/diagnóstico por imagem , Epilepsia/diagnóstico por imagem , Epilepsia/etiologia , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Animais , Anisotropia , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Modelos Animais de Doenças , Eletroencefalografia , Estudos Longitudinais , Masculino , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA