Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 31(14): 3761-3783, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35593305

RESUMO

Major seasonal community reorganizations and associated biomass variations are landmarks of plankton ecology. However, the processes of plankton community turnover rates have not been fully elucidated so far. Here, we analyse patterns of planktonic protist community succession in temperate latitudes, based on quantitative taxonomic data from both microscopy counts (cells >10 µm) and ribosomal DNA metabarcoding (size fraction >3 µm, 18S rRNA gene) from plankton samples collected bimonthly over 8 years (2009-2016) at the SOMLIT-Astan station (Roscoff, Western English Channel). Based on morphology, diatoms were clearly the dominating group all year round and over the study period. Metabarcoding uncovered a wider diversity spectrum and revealed the prevalence of Dinophyceae and diatoms but also of Cryptophyta, Chlorophyta, Cercozoa, Syndiniales and Ciliophora in terms of read counts and or richness. The use of morphological and molecular analyses in combination allowed improving the taxonomic resolution and to identify the sequence of the dominant species and OTUs (18S V4 rDNA-derived taxa) that drive annual plankton successions. We detected that some of these dominant OTUs were benthic as a result of the intense tidal mixing typical of the French coasts in the English Channel. Our analysis of the temporal structure of community changes point to a strong seasonality and resilience. The temporal structure of environmental variables (especially Photosynthetic Active Radiation, temperature and macronutrients) and temporal structures generated by species life cycles and or species interactions, are key drivers of the observed cyclic annual plankton turnover.


Assuntos
Biodiversidade , Diatomáceas , Diatomáceas/genética , Eucariotos/genética , Filogenia , Plâncton/genética , RNA Ribossômico 18S/genética , Estações do Ano
2.
Avian Dis ; 65(3): 429-437, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34699140

RESUMO

Adenoviral pancreatitis has been amply described for decades in guinea fowl. Although its pathologic picture has been characterized fairly well, its etiology still remains only partially clarified. Based on several outbreaks diagnosed on commercial guinea flocks raised in France since 2017, we performed direct whole-genome sequencing from pancreatic lesional tissue by using the Oxford Nanopore Technologies (ONT) sequencing method. We generated 4781 viral reads and assembled a whole genome of 43,509 bp, clustering within fowl adenovirus type 1 (FAdV-1). A phylogenetic analysis based on a partial sequence of the hexon and short fiber genes on viruses collected in France showed 98.7% and 99.8% nucleotide identity, respectively. Altogether, these results confirm that an FAdV-1 closely related to chicken and other avian strains is the agent of pancreatitis in guinea fowl. This study illustrates the potential of ONT sequencing method to achieve rapid whole-genome sequencing directly from pathologic material.


Detección y tipificación de un adenovirus aviar tipo 1 (FAdV-1), agente de pancreatitis en gallinas de Guinea. La pancreatitis adenoviral se ha descrito ampliamente durante décadas en gallinas de Guinea. Aunque su cuadro patológico se ha caracterizado bastante bien, su etiología todavía permanece sólo parcialmente aclarada. Sobre la base de varios brotes diagnosticados en parvadas comerciales de guineas criadas en Francia desde el año 2017, se realizó una secuenciación directa del genoma completo a partir del tejido de la lesión pancreática mediante el método de secuenciación desarrollado por Oxford Nanopore Technologies. Se generaron 4781 lecturas virales y se ensambló un genoma completo de 43,509 pb, que se agrupó dentro del adenovirus aviar tipo 1 (FAdV-1). Un análisis filogenético basado en una secuencia parcial de los genes hexón y de fibra corta de virus recolectados en Francia mostró identidades de nucleótidos de 98.7% y 99.8%, respectivamente. En conjunto, estos resultados confirman que un adenovirus aviar tipo 1 estrechamente relacionado con el pollo y otras cepas aviares es el agente de la pancreatitis en la gallina de Guinea. Este estudio ilustra el potencial de las tecnologías desarrolladas por Oxford Nanopore Thechnologies para lograr una secuenciación rápida de todo el genoma directamente a partir de material patológico.


Assuntos
Infecções por Adenoviridae , Aviadenovirus , Adenovirus A das Aves , Pancreatite , Doenças das Aves Domésticas , Adenoviridae , Infecções por Adenoviridae/epidemiologia , Infecções por Adenoviridae/veterinária , Animais , Aviadenovirus/genética , Galinhas , Pancreatite/veterinária , Filogenia
3.
Front Microbiol ; 11: 1, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32082274

RESUMO

Recombinant strains of hepatitis E virus (HEV) with insertions of human genomic fragments or HEV sequence duplications in the sequence encoding the polyproline region (PPR) were previously described in chronically infected patients. Such genomic rearrangements confer a replicative advantage in vitro but little is known about their frequency, location, or origin. As the sequences of only a few virus genomes are available, we analyzed the complete genomes of 114 HEV genotype 3 strains from immunocompromised (n = 85) and immunocompetent (n = 29) patients using the single molecular real-time sequencing method to determine the frequency, location, and origin of inserted genomic fragments, plus the proportions of variants with genomic rearrangements in each virus quasispecies. We also examined the amino acid compositions and post-translational modifications conferred by these rearrangements by comparing them to sequences without human gene insertions or HEV gene duplications. We found genomic rearrangements in 7/114 (6.1%) complete genome sequences (4 HEV-3f, 1 HEV-3e, 1 HEV-3 h, and 1 HEV-3chi-new), all from immunocompromised patients, and 3/7 were found at the acute phase of infection. Six of the seven patients harbored virus-host recombinant variants, including one patient with two different recombinant variants. We also detected three recombinant variants with genome duplications of the PPR or PPR + X domains in a single patient. All the genomic rearrangements (seven human fragment insertions of varying origins and three HEV genome duplications) occurred in the PPR. The sequences with genomic rearrangements had specific characteristics: increased net load (p < 0.001) and more ubiquitination (p < 0.001), phosphorylation (p < 0.001), and acetylation (p < 0.001) sites. The human fragment insertions and HEV genome duplications had slightly different characteristics. We believe this is the first description of HEV strains with genomic rearrangements in patients at the acute phase of infection; perhaps these strains are directly transmitted. Clearly, genomic rearrangements produce a greater net load with duplications and insertions having different features. Further studies are needed to clarify the mechanisms by which such modifications influence HEV replication.

4.
Mitochondrial DNA A DNA Mapp Seq Anal ; 30(2): 256-263, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30043666

RESUMO

Mitochondrial genetic markers have been extensively used to study the phylogenetics and phylogeography of many birds, including seabirds of the order Procellariiformes. Evidence suggests that part of the mitochondrial genome of Procellariiformes, especially albatrosses, is duplicated, but no DNA fragment covering the entire duplication has been sequenced. We sequenced the complete mitochondrial genome of a non-albatross species of Procellariiformes, Puffinus lherminieri (Audubon's shearwater) using the long-read MinION (ONT) technology. Two mitogenomes were assembled from the same individual, differing by 52 SNPs and in length. The shorter was 19 kb long while the longer was 21 kb, due to the presence of two identical copies of nad6, three tRNA, and two dissimilar copies of the control region (CR). Contrary to albatrosses, cob was not duplicated. We further detected a complex repeated region of undetermined length between the CR and 12S. Long-read sequencing suggests heteroplasmy and a novel arrangement within the duplicated region, indicating a complex evolution of the mitogenome in Procellariiformes.


Assuntos
Aves/genética , DNA Mitocondrial/genética , Duplicação Gênica , Animais , Proteínas Aviárias/genética , Citocromos b/genética , Variações do Número de Cópias de DNA , Polimorfismo de Nucleotídeo Único , RNA de Transferência/genética
5.
J Virol Methods ; 261: 34-39, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30086381

RESUMO

Avian pox is an infectious disease caused by avipoxviruses (APV), resulting in cutaneous and/or tracheal lesions. Poxviruses share large genome sizes (from 130 to 360 kb), featuring repetitions, deletions or insertions as a result of a long-term recombination history. The increasing performances of next-generation sequencing (NGS) opened new opportunities for surveillance of poxviruses, based on timely and affordable workflows. We investigated the application of the 3rd generation Oxford Nanopore Minion technology to achieve real-time whole-genome sequencing directly from lesions, without any enrichment or isolation step. Fowlpox lesions were sampled on hens, total DNA was extracted and processed for sequencing on a MinION, Oxford Nanopore. We readily generated whole APV genomes from cutaneous or tracheal lesions, without any isolation or PCR-based enrichment: Fowlpox virus reads loads ranged from 0.75% to 2.62% and reads up to 61 kbp were generated and readily assembled into 3 APV complete genomes. This long read size eases the assembly step and lowers the bioinformatics capacity requirements and processing time compared to huge sets of short reads. The complete genome analysis confirmed that these Fowlpox viruses cluster within clade A1 and host full length reticuloendotheliovirus (REV) inserts. The pathobiological relevance of REV insert, although a classical feature of fowlpoxviruses (FPVs), should be further investigated. Surveillance of emerging poxviruses could greatly benefit from real-time whole genome sequencing.


Assuntos
Avipoxvirus/classificação , Avipoxvirus/genética , Técnicas de Genotipagem/métodos , Doenças das Aves Domésticas/virologia , Infecções por Poxviridae/veterinária , Análise de Sequência de DNA/métodos , Sequenciamento Completo do Genoma/métodos , Animais , Avipoxvirus/isolamento & purificação , Galinhas , Monitoramento Epidemiológico , Epidemiologia Molecular/métodos , Nanoporos , Doenças das Aves Domésticas/epidemiologia , Infecções por Poxviridae/epidemiologia , Infecções por Poxviridae/virologia , Fatores de Tempo
6.
Curr Biol ; 28(20): 3296-3302.e7, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30146156

RESUMO

Many animal species comprise discrete phenotypic forms. A common example in natural populations of insects is the occurrence of different color patterns, which has motivated a rich body of ecological and genetic research [1-6]. The occurrence of dark, i.e., melanic, forms displaying discrete color patterns is found across multiple taxa, but the underlying genomic basis remains poorly characterized. In numerous ladybird species (Coccinellidae), the spatial arrangement of black and red patches on adult elytra varies wildly within species, forming strikingly different complex color patterns [7, 8]. In the harlequin ladybird, Harmonia axyridis, more than 200 distinct color forms have been described, which classic genetic studies suggest result from allelic variation at a single, unknown, locus [9, 10]. Here, we combined whole-genome sequencing, population-based genome-wide association studies, gene expression, and functional analyses to establish that the transcription factor Pannier controls melanic pattern polymorphism in H. axyridis. We show that pannier is necessary for the formation of melanic elements on the elytra. Allelic variation in pannier leads to protein expression in distinct domains on the elytra and thus determines the distinct color patterns in H. axyridis. Recombination between pannier alleles may be reduced by a highly divergent sequence of ∼170 kb in the cis-regulatory regions of pannier, with a 50 kb inversion between color forms. This most likely helps maintain the distinct alleles found in natural populations. Thus, we propose that highly variable discrete color forms can arise in natural populations through cis-regulatory allelic variation of a single gene.


Assuntos
Besouros/fisiologia , Estudo de Associação Genômica Ampla , Pigmentação/genética , Pigmentos Biológicos/metabolismo , Polimorfismo de Nucleotídeo Único , Animais , Besouros/genética , Cor , Feminino , Regulação da Expressão Gênica , Genoma de Inseto , Genômica , Masculino
7.
Rev Med Virol ; 28(5): e1987, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29939461

RESUMO

Hepatitis E virus genotype 3 (HEV-3) can lead to chronic infection in immunocompromised patients, and ribavirin is the treatment of choice. Recently, mutations in the polymerase gene have been associated with ribavirin failure but their frequency before treatment according to HEV-3 subtypes has not been studied on a large data set. We used single-molecule real-time sequencing technology to sequence 115 new complete genomes of HEV-3 infecting French patients. We analyzed phylogenetic relationships, the length of the polyproline region, and mutations in the HEV polymerase gene. Eighty-five (74%) were in the clade HEV-3efg, 28 (24%) in HEV-3chi clade, and 2 (2%) in HEV-3ra clade. Using automated partitioning of maximum likelihood phylogenetic trees, complete genomes were classified into subtypes. Polyproline region length differs within HEV-3 clades (from 189 to 315 nt). Investigating mutations in the polymerase gene, distinct polymorphisms between HEV-3 subtypes were found (G1634R in 95% of HEV-3e, G1634K in 56% of HEV-3ra, and V1479I in all HEV-3efg, clade HEV-3ra, and HEV-3k strains). Subtype-specific polymorphisms in the HEV-3 polymerase have been identified. Our study provides new complete genome sequences of HEV-3 that could be useful for comparing strains circulating in humans and the animal reservoir.


Assuntos
Variação Genética , Genótipo , Vírus da Hepatite E/classificação , Vírus da Hepatite E/genética , Hepatite E/epidemiologia , Hepatite E/virologia , Animais , França/epidemiologia , Genoma Viral , Humanos , Mutação , Filogenia , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA