Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 9(4): 1706-1734, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38563358

RESUMO

The development of advanced technologies for the fabrication of functional nanomaterials, nanostructures, and devices has facilitated the development of biosensors for analyses. Two-dimensional (2D) nanomaterials, with unique hierarchical structures, a high surface area, and the ability to be functionalized for target detection at the surface, exhibit high potential for biosensing applications. The electronic properties, mechanical flexibility, and optical, electrochemical, and physical properties of 2D nanomaterials can be easily modulated, enabling the construction of biosensing platforms for the detection of various analytes with targeted recognition, sensitivity, and selectivity. This review provides an overview of the recent advances in 2D nanomaterials and nanostructures used for biosensor and wearable-sensor development for healthcare and health-monitoring applications. Finally, the advantages of 2D-nanomaterial-based devices and several challenges in their optimal operation have been discussed to facilitate the development of smart high-performance biosensors in the future.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Técnicas Biossensoriais/métodos , Nanoestruturas/química , Humanos , Dispositivos Eletrônicos Vestíveis , Monitorização Fisiológica/métodos , Monitorização Fisiológica/instrumentação , Técnicas Eletroquímicas/métodos
2.
Xenobiotica ; 49(2): 169-176, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29382249

RESUMO

The objective is to evaluate methoxsalen as an in vitro phenotyping tool in comparison to ABT as a nonspecific inactivator of P450 mediated metabolism. The reversible inhibition of methoxsalen and ABT against the P450, FMO, AO, MAO-A and -B, enzymes were evaluated using standard marker probe reactions. The time-dependent inhibition of P450 enzymes was evaluated in human liver microsomes. CES1 activities were determined by monitoring the depletion of known substrate, the clopidogrel. The metabolism of P450 substrates in the presence and absence of methoxsalen or ABT was evaluated in human liver microsomes. Methoxsalen is a direct inhibitor and inhibited the activities (>90%) of all enzymes at a concentration of 300 µM except for CYP2C9. Methoxsalen is also a potent time-dependent inhibitor of all P450 enzymes except for CYP2C19 (moderate) at a concentration of 300 µM. Methoxsalen inhibited the metabolism of P450 substrates in the pre-incubation mode. ABT is a potent TDI of several P450 except for CYP2C19 (47%) and CYP2C9 (27%). The results indicate that methoxsalen is a potent pan P450 inhibitor than ABT and can be a better tool in distinguishing P450 mediated metabolism form non-P450 metabolism in human liver microsomes.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Metoxaleno/química , Microssomos Hepáticos/metabolismo , Triazóis/química , Clopidogrel/metabolismo , Inibidores das Enzimas do Citocromo P-450 , Humanos , Fenótipo , Isoformas de Proteínas/antagonistas & inibidores
3.
Sci Technol Adv Mater ; 18(1): 43-50, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28179957

RESUMO

Detection of disease-related gene expression by DNA hybridization is a useful diagnostic method. In this study a monolayer graphene field effect transistor (GFET) was fabricated for the detection of a particular single-stranded DNA (target DNA). The probe DNA, which is a single-stranded DNA with a complementary nucleotide sequence, was directly immobilized onto the graphene surface without any linker. The VDirac was shifted to the negative direction in the probe DNA immobilization. A further shift of VDirac in the negative direction was observed when the target DNA was applied to GFET, but no shift was observed upon the application of non-complementary mismatched DNA. Direct immobilization of double-stranded DNA onto the graphene surface also shifted the VDirac in the negative direction to the same extent as that of the shift induced by the immobilization of probe DNA and following target DNA application. These results suggest that the further shift of VDirac after application of the target DNA to the GFET was caused by the hybridization between the probe DNA and target DNA.

4.
Xenobiotica ; 44(3): 197-204, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24156774

RESUMO

1. Aldehyde oxidase (AO) is a liver cytosolic molybdoflavoprotein enzyme whose importance in drug metabolism is gaining in the recent. The objective of this work is to find a potent and selective inhibitor for AO activity using phthalazine oxidation as a marker reaction. 2. Among organic solvents tested, it was identified that methanol was not a suitable choice for AO activity even at concentrations less than 0.2% v/v. Acetonitrile and DMSO did not show any effect till 0.5% v/v but thereafter activites tend to decrease. 3. For selectivity, 23 compounds were selected and evaluated for their effects on AO and nine CYP450 enzymes. Among the tested compounds chlorpromazine, estradiol, hydralazine, quetiapine and raloxifene were selected based on their potency of inhibition towards AO activity. 4. Raloxifene was found to be a non-specific inhibitor of all major tested CYP450 enzymes and was excluded as a selective inhibitor for AO. Quetiapine also showed a degree of inhibition towards the major CYP450 tested. Hydralazine used as a specific inhibitor during the past for AO activity demonstrated a stimulation of AO activity at high and low concentrations respectively and the inhibition noted to be time dependent while inhibiting other enzymes like monoamine oxidase. 5. Estradiol showed no inhibition towards the tested CYP450 enzymes and thus proved to be a selective and specific inhibitor for AO activity with an uncompetitive mode of inhibition.


Assuntos
Aldeído Oxidase/antagonistas & inibidores , Inativação Metabólica/fisiologia , Fígado/metabolismo , Solventes/farmacologia , Aldeído Oxidase/metabolismo , Biomarcadores/metabolismo , Cromatografia Líquida , Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/metabolismo , Dibenzotiazepinas/farmacologia , Estradiol/farmacologia , Humanos , Fígado/fisiologia , Microssomos Hepáticos/metabolismo , Oxirredução , Ftalazinas/metabolismo , Fumarato de Quetiapina , Cloridrato de Raloxifeno/farmacologia , Espectrometria de Massas em Tandem
5.
J Pharmacol Toxicol Methods ; 65(3): 115-21, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22487318

RESUMO

INTRODUCTION: Rapid and reliable preclinical receptor occupancy measurement at the target organ in relevant species is critical in accelerating the drug hunting process. The aim of this study was to develop in vivo receptor occupancy assay for histamine H3 receptors (H3R) using the non-radiolabeled GSK189254 as a tracer and to correlate the occupancy-exposure relationship for H3R antagonists in the rats. METHODS: In vivo tracer characterization studies like brain regional distribution, dose and time dependent uptake were carried out for GSK189254 in the male Wistar rats after intravenous administration. The tracer specificity was validated by pretreatment with H3 antagonists like ciproxifan, thioperamide, and GSK334429. The brain regional tracer levels and H3R antagonist concentrations in plasma and brain were quantified using liquid chromatography tandem mass spectrometry. Receptor occupancy was calculated using the ratio of total binding (striatum or frontal cortex) to the nonspecific binding (cerebellum) of the tracer in animals pretreated with H3R antagonist. RESULTS: High degree of selective distribution of GSK189254 was found in striatum, frontal cortex, and low level in the cerebellum. Regional distribution of GSK189254 in the rat brain was consistent to that of H3R distribution mapped using ³H or ¹¹C-GSK189254 in human, porcine, and rat. The calculated occupancy ED50 values in the frontal cortex were 0.14, 1.58, and 0.14 mg/kg for ciproxifan, thioperamide, and GSK334429, respectively. The plasma EC50 values (ng/mL) were found to be 2.33, 292.2, and 3.54 for ciproxifan, thioperamide and GSK334429, respectively. DISCUSSION: Results from mass spectroscopy based approach to determine H3R occupancy in rat brain is comparable with reported radiolabeled method by scintillation spectroscopy. In conclusion, non-radiolabeled GSK189254 was successfully employed as a tracer for assessing the H3R occupancy in rats and it can be used as a preclinical tool for evaluation of novel H3R ligands in the drug discovery.


Assuntos
Bioensaio/métodos , Antagonistas dos Receptores Histamínicos H3/química , Antagonistas dos Receptores Histamínicos H3/farmacologia , Receptores Histamínicos H3/química , Receptores Histamínicos H3/metabolismo , Animais , Azepinas/química , Azepinas/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Cromatografia Líquida/métodos , Descoberta de Drogas/métodos , Imidazóis/química , Imidazóis/farmacologia , Masculino , Piperidinas/química , Piperidinas/farmacologia , Ligação Proteica/efeitos dos fármacos , Piridinas/química , Piridinas/farmacologia , Ratos , Ratos Wistar , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA