Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Infect Dis ; 10(6): 2172-2182, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38724014

RESUMO

Lipoic acid (LA) is an essential cofactor in prokaryotic and eukaryotic organisms, required for the function of several multienzyme complexes such as oxoacid dehydrogenases. Prokaryotes either synthesize LA or salvage it from the environment. The salvage pathway in Staphylococcus aureus includes two lipoate-protein ligases, LplA1 and LplA2, as well as the amidotransferase LipL. In this study, we intended to hijack the salvage pathway by LA analogues that are transferred via LplA2 and LipL to the E2 subunits of various dehydrogenases, thereby resulting in nonfunctional enzymes that eventually impair viability of the bacterium. Initially, a virtual screening campaign was carried out to identify potential LA analogues that bind to LplA2. Three selected compounds affected S. aureus USA300 growth in minimal medium at concentrations ranging from 2.5 to 10 µg/mL. Further analysis of the most potent compound (Lpl-004) revealed its transfer to E2 subunits of dehydrogenase complexes and a negative impact on its functionality. Growth impairment caused by Lpl-004 treatment was restored by adding products of the lipoate-dependent enzyme complexes. In addition, Caenorhabditis elegans infected with LpL-004-treated USA300 demonstrated a significantly expanded lifespan compared to worms infected with untreated bacteria. Our results provide evidence that LA analogues exploiting the LA salvage pathway represent an innovative strategy for the development of novel antimicrobial substances.


Assuntos
Antibacterianos , Staphylococcus aureus , Ácido Tióctico , Ácido Tióctico/farmacologia , Ácido Tióctico/análogos & derivados , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/enzimologia , Staphylococcus aureus/genética , Virulência , Animais , Antibacterianos/farmacologia , Antibacterianos/química , Peptídeo Sintases/metabolismo , Peptídeo Sintases/genética , Caenorhabditis elegans , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/tratamento farmacológico
3.
Front Mol Biosci ; 7: 592747, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324680

RESUMO

Temperature is a crucial variable that every living organism, from bacteria to humans, need to sense and respond to in order to adapt and survive. In particular, pathogenic bacteria exploit host-temperature sensing as a cue for triggering virulence gene expression. Here, we have identified and characterized two integral membrane thermosensor histidine kinases (HKs) from Gram-positive pathogens that exhibit high similarity to DesK, the extensively characterized cold sensor histidine kinase from Bacillus subtilis. Through in vivo experiments, we demonstrate that SA1313 from Staphylococcus aureus and BA5598 from Bacillus anthracis, which likely control the expression of putative ATP binding cassette (ABC) transporters, are regulated by environmental temperature. We show here that these HKs can phosphorylate the non-cognate response regulator DesR, partner of DesK, both in vitro and in vivo, inducing in B. subtilis the expression of the des gene upon a cold shock. In addition, we report the characterization of another DesK homolog from B. subtilis, YvfT, also closely associated to an ABC transporter. Although YvfT phosphorylates DesR in vitro, this sensor kinase can only induce des expression in B. subtilis when overexpressed together with its cognate response regulator YvfU. This finding evidences a physiological mechanism to avoid cross talk with DesK after a temperature downshift. Finally, we present data suggesting that the HKs studied in this work appear to monitor different ranges of membrane lipid properties variations to mount adaptive responses upon cooling. Overall, our findings point out that bacteria have evolved sophisticated mechanisms to assure specificity in the response to environmental stimuli. These findings pave the way to understand thermosensing mediated by membrane proteins that could have important roles upon host invasion by bacterial pathogens.

4.
J Biol Chem ; 295(44): 14973-14986, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32843480

RESUMO

Lipoic acid (LA) is a sulfur-containing cofactor that covalently binds to a variety of cognate enzymes that are essential for redox reactions in all three domains of life. Inherited mutations in the enzymes that make LA, namely lipoyl synthase, octanoyltransferase, and amidotransferase, result in devastating human metabolic disorders. Unfortunately, because many aspects of this essential pathway are still obscure, available treatments only serve to alleviate symptoms. We envisioned that the development of an organismal model system might provide new opportunities to interrogate LA biochemistry, biology, and physiology. Here we report our investigations on three Caenorhabditis elegans orthologous proteins involved in this post-translational modification. We established that M01F1.3 is a lipoyl synthase, ZC410.7 an octanoyltransferase, and C45G3.3 an amidotransferase. Worms subjected to RNAi against M01F1.3 and ZC410.7 manifest larval arrest in the second generation. The arrest was not rescued by LA supplementation, indicating that endogenous synthesis of LA is essential for C. elegans development. Expression of the enzymes M01F1.3, ZC410.7, and C45G3.3 completely rescue bacterial or yeast mutants affected in different steps of the lipoylation pathway, indicating functional overlap. Thus, we demonstrate that, similarly to humans, C. elegans is able to synthesize LA de novo via a lipoyl-relay pathway, and suggest that this nematode could be a valuable model to dissect the role of protein mislipoylation and to develop new therapies.


Assuntos
Caenorhabditis elegans/metabolismo , Modelos Biológicos , Ácido Tióctico/metabolismo , Animais , Bacillus subtilis/genética , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/metabolismo , Metabolismo Energético , Escherichia coli/genética , Ácidos Graxos/biossíntese , Lipoilação , Neurônios/metabolismo , Interferência de RNA , Ácido Tióctico/genética
5.
Mol Microbiol ; 112(1): 302-316, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31066113

RESUMO

Lipoate is an essential cofactor for key enzymes of oxidative and one-carbon metabolism. It is covalently attached to E2 subunits of dehydrogenase complexes and GcvH, the H subunit of the glycine cleavage system. Bacillus subtilis possess two protein lipoylation pathways: biosynthesis and scavenging. The former requires octanoylation of GcvH, insertion of sulfur atoms and amidotransfer of the lipoate to E2s, catalyzed by LipL. Lipoate scavenging is mediated by a lipoyl protein ligase (LplJ) that catalyzes a classical two-step ATP-dependent reaction. Although these pathways were thought to be redundant, a ∆lipL mutant, in which the endogenous lipoylation pathway of E2 subunits is blocked, showed growth defects in minimal media even when supplemented with lipoate and despite the presence of a functional LplJ. In this study, we demonstrate that LipL is essential to modify E2 subunits of branched chain ketoacid and pyruvate dehydrogenases during lipoate scavenging. The crucial role of LipL during lipoate utilization relies on the strict substrate specificity of LplJ, determined by charge complementarity between the ligase and the lipoylable subunits. This new lipoyl-relay required for lipoate scavenging highlights the relevance of the amidotransferase as a valid target for the design of new antimicrobial agents among Gram-positive pathogens.


Assuntos
Bacillus subtilis/metabolismo , Lipoilação/fisiologia , Peptídeo Sintases/metabolismo , Aciltransferases/metabolismo , Aminoácido Oxirredutases , Sequência de Aminoácidos , Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Glutamato Sintase/metabolismo , Complexo Cetoglutarato Desidrogenase/metabolismo , Complexos Multienzimáticos , Peptídeo Sintases/genética , Especificidade por Substrato , Ácido Tióctico/genética , Transferases
6.
Subcell Biochem ; 49: 71-99, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18751908

RESUMO

Microorganisms, plants and animals regulate the synthesis of unsaturated fatty acids (UFAs) during changing environmental conditions as well as in response to nutrients. Unsaturation of fatty acid chains has important structural roles in cell membranes: a proper ratio of saturated to UFAs contributes to membrane fluidity. Alterations in this ratio have been implicated in various disease states including cardiovascular diseases, immune disorders, cancer and obesity. They are also the major components of triglycerides and intermediates in the synthesis of biologically active molecules such as eicosanoids, which mediates fever, inflammation and neurotransmission. UFAs homeostasis in many organisms is achieved by feedback regulation of fatty acid desaturases gene transcription. Here, we review recently discovered components and mechanisms of the regulatory machinery governing the transcription of fatty acid desaturases in bacteria, yeast and animals.


Assuntos
Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Insaturados/fisiologia , Transdução de Sinais/fisiologia , Animais , Bacillus subtilis/metabolismo , Regulação da Expressão Gênica , Humanos , Insulina/fisiologia , Leptina/fisiologia , Fluidez de Membrana/fisiologia , Receptores Ativados por Proliferador de Peroxissomo/fisiologia , Pseudomonas aeruginosa/metabolismo , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/fisiologia , Synechocystis/metabolismo
7.
J Bacteriol ; 187(22): 7631-8, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16267287

RESUMO

The synthesis of L-cysteine, the major mechanism by which sulfur is incorporated into organic compounds in microorganisms, occupies a significant fraction of bacterial metabolism. In Bacillus subtilis the cysH operon, encoding several proteins involved in cysteine biosynthesis, is induced by sulfur starvation and tightly repressed by cysteine. We show that a null mutation in the cysK gene encoding an O-acetylserine-(thiol)lyase, the enzyme that catalyzes the final step in cysteine biosynthesis, results in constitutive expression of the cysH operon. Using DNA microarrays we found that, in addition to cysH, almost all of the genes required for sulfate assimilation are constitutively expressed in cysK mutants. These results indicate that CysK, besides its enzymatic role in cysteine biosynthesis, is a global negative regulator of genes involved in sulfur metabolism.


Assuntos
Bacillus subtilis/enzimologia , Cisteína Sintase/metabolismo , Regulação Bacteriana da Expressão Gênica , Enxofre/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono-Oxigênio Liases/genética , Carbono-Oxigênio Liases/metabolismo , Cisteína/biossíntese , Cisteína Sintase/genética , Escherichia coli , Fusão Gênica , Genes Reporter , Análise de Sequência com Séries de Oligonucleotídeos , Óperon , beta-Galactosidase/análise , beta-Galactosidase/genética
8.
J Bacteriol ; 186(9): 2655-63, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15090506

RESUMO

The Bacillus subtilis DesK/DesR two-component system regulates the expression of the des gene coding for the Delta5 acyl lipid desaturase. It is believed that a decrease in membrane lipid fluidity activates the DesK/DesR signal transduction cascade, which results in synthesis of the Delta5 acyl lipid desaturase and desaturation of membrane phospholipids. These newly synthesized unsaturated fatty acids then act as negative signals of des transcription, thus generating a regulatory metabolic loop that optimizes membrane fluidity. We previously suggested that DesK is a bifunctional enzyme with both kinase and phosphatase activities that could assume different signaling states in response to changes in the fluidity of membrane lipids. However, no direct experimental evidence supported this proposed model. In this study, we show that the C-terminal fragment of the DesK protein (DesKC) indeed acts as an autokinase. Addition of the response regulator DesR to phosphorylated DesKC resulted in rapid transfer of the phosphoryl group to DesR. Further, phosphorylated DesR can be dephosphorylated in the presence of DesKC, thus demonstrating that the sensor kinase has the ability to covalently modify DesR through both kinase and phosphatase activities. We also present evidence that DesKC might be locked in a kinase-dominant state in vivo and that its activities are not affected either in vivo or in vitro by unsaturated fatty acids. These findings provide the first direct evidence that the transmembrane segments of DesK are essential to sense changes in membrane fluidity and for regulating the ratio of kinase to phosphatase activities of the cytoplasmic C-terminal domain.


Assuntos
Bacillus subtilis/metabolismo , Ácidos Graxos Dessaturases/genética , Regulação Bacteriana da Expressão Gênica , Fluidez de Membrana , Proteínas Quinases/fisiologia , Magnésio/farmacologia , Monoéster Fosfórico Hidrolases/metabolismo , Transdução de Sinais , Transcrição Gênica
9.
Microbiology (Reading) ; 146 ( Pt 4): 815-821, 2000 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10784039

RESUMO

Sulphate permeases in the plasma membrane are responsible for uptake of environmental sulphate used in the sulphate assimilation pathway in bacteria and plants. Here it is reported that the ORF designated cysP, located on the Bacillus subtilis chromosome between cysH and five putative genes involved in sulphate assimilation, encodes a sulphate permease. cysP is able to complement Escherichia coli cysteine auxotrophs with mutations affecting either the membrane or periplasmic components of the sulphate-thiosulphate permease. Transport studies with cell suspensions of a cysA97 E. coli strain transformed with a plasmid expressing the B. subtilis cysP gene indicated that CysP catalyses sulphate uptake. Analysis of the primary sequence showed that CysP (354 amino acids, estimated molecular mass 24 kDa) is a highly hydrophobic protein which has 11 putative transmembrane helices. Sequence comparisons revealed that CysP, together with the phosphate permease of Neurospora crassa, Pho-4, and E. coli PitA, belongs to the family of related transporters, the inorganic phosphate transporter (Pit) family. Among the putative phosphate permeases, CysP shows a similar size and the same domain organization as the archaeal transporters. This is the first report of a sulphate permease in a Gram-positive organism.


Assuntos
Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Fosfatos/metabolismo , Genes Bacterianos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA