Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Am J Orthod Dentofacial Orthop ; 165(6): 663-670, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38520414

RESUMO

INTRODUCTION: The use of 3-dimensional (3D) printing techniques in fabricating crowns has increased the demand for bracket bonding onto these surfaces. The objective was to evaluate the shear bond strength (SBS) of orthodontic brackets bonded onto 3D-printed crowns using primer-incorporated orthodontic adhesives and 3D printing materials as orthodontic adhesives. METHODS: A total of 160 crowns were printed with two 3D printing materials, DentaTOOTH (Asiga, Sydney, Australia) (group A) and NextDent C&B Micro Filled Hybrid (3D Systems, Soesterberg, Netherlands) (group N). Each group was randomly divided into 4 adhesive subgroups (n = 20): Transbond XT (for groups A [ATX] and N [NTX]; 3M Unitek, Monrovia, Calif), Ortho Connect (for groups A [AOC] and N [NOC]; GC Corporation., Tokyo, Japan), Orthomite LC (for groups A [AOM] and N [NOM]; Sun Medical, Co Ltd, Moriyama, Shiga, Japan), and unpolymerized liquid state of 3D printing resin (for groups A [AA] and N [NN]). SBS was measured with a universal testing machine at a crosshead speed of 0.5 mm/min. The adhesive remnant index and the mode of failure were analyzed under the microscope. Statistical analysis was performed at a significance level of α = 0.05. RESULTS: When used as adhesives (AA and NN), 3D printing materials showed no statistically significant difference in SBS compared with Transbond XT (ATX and NTX, respectively). In group N, NN showed a significantly higher SBS than primer-incorporated orthodontic adhesives (NOC and NOM; P <0.001). Adhesive failures were only observed in primer-incorporated orthodontic adhesives (AOC, NOC, AOM, and NOM). CONCLUSIONS: Primer-incorporated orthodontic adhesives, as well as unpolymerized 3D printing materials employed as orthodontic adhesives on 3D-printed crowns, exhibited comparable bonding strength to Transbond XT without surface modification. Despite variations in adhesive-related factors, all measurements stayed within clinically acceptable ranges, highlighting the potential of these materials for orthodontic bonding on 3D-printed crowns, simplifying clinical procedures without compromising bond strength.


Assuntos
Coroas , Braquetes Ortodônticos , Impressão Tridimensional , Resistência ao Cisalhamento , Humanos , Colagem Dentária/métodos , Cimentos Dentários/química , Teste de Materiais , Análise do Estresse Dentário , Cimentos de Resina/química
2.
Photodiagnosis Photodyn Ther ; 46: 104019, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395246

RESUMO

BACKGROUND: Streptococcus mutans and Candida albicans are associated with caries recurrence. Therefore, this study evaluated the combination of a Ru(II)-loaded resin-based dental material (RDM) and antimicrobial photodynamic therapy (aPDT) against a dual-species biofilm of S. mutans and C. albicans. METHODS: An aPDT protocol was established evaluating Ru(II)'s photocatalytic activity and antimicrobial potential under blue LED irradiation (440-460 nm, 22.55 mW/cm2) at different energy densities (0.00, 6.25, 20.25, 40.50 J/cm2). This evaluation involved singlet oxygen quantification and determination of minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC). The biofilm was grown (72 h) on resin disks prepared with Ru(II)-doped RDM (0.00, 0.56, or 1.12 %) and samples were exposed to aPDT or dark conditions. The biofilm was then harvested to analyze cell viability (CFU counts) and formation of soluble and insoluble exopolysaccharides. RESULTS: The photocatalytic activity of Ru(II) was concentration and energy density dependent (p < 0.05), and MIC/MBC values were reduced for the microorganisms after LED irradiation (40.5 J/cm2); therefor, this energy density was chosen for aPDT. Although incorporation of Ru(II) into RDM reduced the biofilm growth compared to Ru(II)-free RDM for both species in dark conditions (p < 0.05), aPDT combined with an Ru(II)-loaded RDM (0.56 or 1.12 %) potentialized CFU reductions (p < 0.05). Conversely, only 1.12 % Ru(II) with LED irradiation showed lower levels of both soluble and insoluble exopolysaccharides compared to Ru(II)-free samples in dark conditions (p < 0.05). CONCLUSIONS: When the Ru(II)-loaded RDM was associated with blue LED, aPDT reduced cell viability and lower soluble and insoluble exopolysaccharides were found in the cariogenic dual-species biofilm.


Assuntos
Biofilmes , Candida albicans , Testes de Sensibilidade Microbiana , Fotoquimioterapia , Fármacos Fotossensibilizantes , Rutênio , Streptococcus mutans , Fotoquimioterapia/métodos , Biofilmes/efeitos dos fármacos , Streptococcus mutans/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Candida albicans/efeitos dos fármacos , Rutênio/farmacologia , Rutênio/química , Materiais Dentários/farmacologia , Oxigênio Singlete , Cárie Dentária/tratamento farmacológico , Resinas Compostas/farmacologia , Resinas Compostas/química
3.
Pharmaceutics ; 15(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38140048

RESUMO

Dental caries is a highly preventable and costly disease. Unfortunately, the current management strategies are inadequate at reducing the incidence and new minimally invasive strategies are needed. In this study, a systematic evaluation of specific light parameters and aqueous curcumin concentrations for antimicrobial photodynamic therapy (aPDT) was conducted. Aqueous solutions of curcumin were first prepared and evaluated for their light absorbance after applying different ~56 mW/cm2 blue light treatments in a continuous application mode. Next, these same light treatments as well as different application modes were applied to the curcumin solutions and the molar absorptivity coefficient, reactive oxygen species (ROS) release, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) for Streptococcus mutans and the MIC and minimum fungicidal concentration (MFC) for Candida albicans were measured. After up to 1 min of light treatment, the molar absorptivity of curcumin when added to culture media was lower than that for water only; however, at higher energy levels, this difference was not apparent. There was a noted dependence on both ROS type and cariogenic microorganism species on the sensitivity to both blue light treatment and application mode. In conclusion, this study provides new information towards improving the agonistic potential of aPDT associated with curcumin against cariogenic microorganisms.

4.
Antibiotics (Basel) ; 12(9)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37760711

RESUMO

Chlorhexidine is the most commonly used anti-infective drug in dentistry. To treat infected void areas, a drug-loaded material that swells to fill the void and releases the drug slowly is needed. This study investigated the encapsulation and release of chlorhexidine from cellulose acetate nanofibers for use as an antibacterial treatment for dental bacterial infections by oral bacteria Streptococcus mutans and Enterococcus faecalis. This study used a commercial electrospinning machine to finely control the manufacture of thin, flexible, chlorhexidine-loaded cellulose acetate nanofiber mats with very-small-diameter fibers (measured using SEM). Water absorption was measured gravimetrically, drug release was analyzed by absorbance at 254 nm, and antibiotic effects were measured by halo analysis in agar. Slow electrospinning at lower voltage (14 kV), short target distance (14 cm), slow traverse and rotation, and syringe injection speeds with controlled humidity and temperature allowed for the manufacture of strong, thin films with evenly cross-meshed, uniform low-diameter nanofibers (640 nm) that were flexible and absorbed over 600% in water. Chlorhexidine was encapsulated efficiently and released in a controlled manner. All formulations killed both bacteria and may be used to fill infected voids by swelling for intimate contact with surfaces and hold the drug in the swollen matrix for effective bacterial killing in dental settings.

5.
BMC Oral Health ; 23(1): 554, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37568132

RESUMO

BACKGROUND: Bioceramic cements have been widely used in endodontic treatment. This study aimed to compare the microhardness, elastic modulus, internal microstructure and chemical compositions of Biodentine, WMTA, ERRM Putty, iRoot FS and IRM after exposure to PBS, butyric acid, and butyric acid followed by PBS. METHODS: Specimens of each material were prepared and randomly divided into 5 subgroups (n = 5): subgroup A: PBS (pH = 7.4) for 4 days, subgroup B: PBS (pH = 7.4) for 14 days, subgroup C: butyric acid (pH = 5.4) for 4 days, subgroup D: butyric acid (pH = 5.4) for 14 days, subgroup E: butyric acid for 4 days followed by 10 days in contact with PBS. The surface microhardness, elastic modulus, internal morphologic and chemical compositions of specimens were analyzed. RESULTS: The microhardness and elastic modulus values of all materials were significantly higher in the presence of PBS compared to exposure to butyric acid, with the same setting time (P < 0.01). After 4-day exposure to butyric acid followed by 10-day exposure to PBS, the microhardness values returned to the same level as 4-day exposure to PBS (P > 0.05). Biodentine showed significantly higher microhardness and elastic modulus values than other materials, while IRM displayed the lowest (P < 0.01). CONCLUSION: Biodentine seems the most suitable bioceramic cements when applied to an infected area with acidic pH. Further storage at neutral pH, e.g. PBS reverses the adverse effects on bioceramic cements caused by a low pH environment.


Assuntos
Compostos de Cálcio , Óxidos , Humanos , Compostos de Alumínio/química , Ácido Butírico , Cálcio , Compostos de Cálcio/farmacologia , Compostos de Cálcio/química , Fosfatos de Cálcio , Cimentos Dentários/química , Combinação de Medicamentos , Teste de Materiais , Óxidos/química , Silicatos/farmacologia , Silicatos/química
6.
Sci Rep ; 12(1): 18691, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333357

RESUMO

Oral biofilms are directly linked to one of the most common chronic human diseases, dental caries. Resin-based dental materials have significant potential to replace amalgam, however they lack sufficient antimicrobial power. This innovative study investigates a curcumin-loaded dental resin which can be utilized in an antimicrobial photodynamic therapy (aPDT) approach. The study evaluated the effects of curcumin loading on resin physicochemical, mechanical, and adhesive properties, as well as the antimicrobial response associated with blue light activation. Preliminary tests involving degree of conversion (DC) and sample integrity determined the optimal loading of curcumin to be restricted to 0.05 and 0.10 wt%. These optimal loadings were tested for flexural strength (FS), water sorption (WS) and solubility (SL), shear bond strength to dentin (SBS), and viability of Streptococcus mutans under 14.6 J/cm2 blue light or dark conditions, in 6 h and 24 h biofilms. The results demonstrated that 0.10 wt% curcumin had minimal impact on either FS or SBS, but detectably increased WS and SL. A 2 log10 (CFU/mL) reduction in S. mutans after light application in both 6 h and 24 h biofilms were corroborated by CLSM imaging and highlighted the significant potential of this novel aPDT approach with resin-based dental materials.


Assuntos
Anti-Infecciosos , Curcumina , Cárie Dentária , Fotoquimioterapia , Humanos , Metacrilatos/química , Curcumina/farmacologia , Cárie Dentária/tratamento farmacológico , Streptococcus mutans , Fotoquimioterapia/métodos , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Resinas Sintéticas/química , Materiais Dentários/farmacologia , Teste de Materiais
7.
Dent Mater ; 38(11): 1763-1776, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36182549

RESUMO

OBJECTIVES: This study aimed to develop and characterize different formulations of porous chitosan scaffolds (SCH) associated with calcium silicate (CaSi) and evaluate their chemotactic and bioactive potential on human dental pulp cells (hDPCs). METHODS: Different concentrations of CaSi suspensions (0.5%, 1.0%, and 2.0%, w/v) were incorporated (1:5; v/v) /or not, into 2% chitosan solution, giving rise to the following groups: SCH (control); SCH+ 0.5CaSi; SCH+ 1.0CaSi; SCH+ 2.0 CaSi. The resulting solutions were submitted to thermally induced phase separation followed by freeze-drying procedures to obtain porous scaffolds. The topography, pH, and calcium release kinetics of the scaffolds were assessed. Next, the study evaluated the influence of these scaffolds on cell migration (MG), viability (VB), proliferation (PL), adhesion and spreading (A&S), and on total protein synthesis (TP), alkaline phosphatase (ALP) activity, mineralized matrix deposition (MMD), and gene expression (GE) of odontogenic differentiation markers (ALP, DSPP, and DMP-1). The data were analyzed with ANOVA complemented with the Tukey post-hoc test (α = 5%). RESULTS: Incorporation of the CaSi suspension into the chitosan scaffold formulation increased pore diameter when compared with control. Increased amounts of CaSi in the CH scaffold resulted in higher pH values and Ca release. In Groups SCH+ 1.0CaSi and SCH+ 2.0CaSi, increased VB, PF, A&S, GE of DSPP/DMP-1 and MMD values were shown. However, Group SCH+ 2.0CaSi was the only formulation capable of enhancing MG and showed the highest increase in TP, MMD, and GE of DMP-1 and DSPP values. SIGNIFICANCE: SCH+ 2.0CaSi formulation had the highest chemotactic and bioactive potential on hDPCs and may be considered a potential biomaterial for pulp-dentin complex regeneration.


Assuntos
Quitosana , Fosfatase Alcalina/metabolismo , Materiais Biocompatíveis/química , Cálcio , Compostos de Cálcio , Diferenciação Celular , Proliferação de Células , Quitosana/farmacologia , Polpa Dentária , Capeamento da Polpa Dentária , Humanos , Porosidade , Silicatos , Engenharia Tecidual , Alicerces Teciduais/química
8.
Materials (Basel) ; 15(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35888540

RESUMO

While resin-based materials meet the many requirements of a restorative material, they lack adequate, long-lasting antimicrobial power. This study investigated a zinc oxide nanoparticle (ZnO NP)-loaded resin-blend (RB) toward a new antimicrobial photodynamic therapy (aPDT)-based approach for managing dental caries. The results confirmed that up to 20 wt% ZnO NPs could be added without compromising the degree of conversion (DC) of the original blend. The DC achieved for the 20 wt% ZnO NP blend has been the highest reported. The effects on flexural strength (FS), shear bond strength to dentin (SBS), water sorption (WS), solubility (SL), and viability of Streptococcus mutans under 1.35 J/cm2 blue light or dark conditions were limited to ≤20 wt% ZnO NP loading. The addition of up to 20 wt% ZnO NPs had a minimal impact on FS or SBS, while a reduction in the bacteria count was observed. The maximum loading resulted in an increase in SL. Furthermore, 28-day aging in 37 °C water increased the FS for all groups, while it sustained the reduction in bacteria count for the 20 wt% resin blends. Overall, the ZnO NP-loaded resin-based restorative material presents significant potential for use in aPDT.

9.
J Appl Biomater Funct Mater ; 20: 22808000221112989, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35856607

RESUMO

OBJECTIVES: To evaluate the effects of a blue light photosensitizer (PS), Ruthenium II complex (Ru), on the chemical, physical, mechanical, and antimicrobial properties of experimental dental resin blends. METHODS: The experimental resin (BisEMA, TEEGDMA, HPMA, ethanol, and photoinitiator) was loaded with Ru at 0.00%, 0.07%, 0.14%, 0.28%, 0.56%, 1.12%, 1.2%, 1.5%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, or 10% w/w. Samples were evaluated for the degree of conversion (DC) after 30 and 60 s curing-time (n = 6). Selected formulations (0.00%, 0.28%, 0.56%, 1.12%) were further tested for shear bond strength (SBS) (n = 15); flexural strength (FS) (n = 12); and antimicrobial properties (CFUs), in dark and light conditions. These latter tests were performed on specimens stored for 24-h or 2-month in 37°C water. Water sorption (WS) and solubility (SL) tests were also performed (n = 12). Data were analyzed either by a one- or two-factor general linear model (α = 0.05). RESULTS: Overall, Ru concentration above 1.2% resulted in reduced DC. In SBS results, only the 1.12%Ru resin blend samples had statistically lower values compared to the 0.00%Ru resin blend at 24-h storage (p = 0.004). In addition, no differences in SBS were detected among the experimental groups after 2-month storage in water. Meanwhile, FS increased for all experimental groups under similar aging conditions (p < 0.001). Antimicrobial properties were improved upon inclusion of Ru and application of light (p < 0.001 for both) at 24-h and 2-month storage. Lastly, no detectable changes in WS or SL were observed for the Ru-added resins compared to the 0.00%Ru resin blend. However, the 0.28% Ru blend presented significantly higher WS compared to the 0.56% Ru blend (p = 0.007). CONCLUSIONS: Stable SBS, improved FS, and sustained antimicrobial properties after aging gives significant credence to our approach of adding the Ruthenium II complex into dental adhesive resin blends intended for an aPDT approach.


Assuntos
Anti-Infecciosos , Colagem Dentária , Fotoquimioterapia , Rutênio , Anti-Infecciosos/farmacologia , Resinas Compostas/química , Materiais Dentários , Teste de Materiais , Metacrilatos/química , Cimentos de Resina/química , Rutênio/farmacologia , Propriedades de Superfície , Água
10.
Dent Mater ; 38(6): 946-959, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35300870

RESUMO

OBJECTIVES: The manufacturing of polymethylmethacrylate(PMMA) microspheres loaded with doxycycline(DOX) and/or silver sulfate(Ag2SO4) to be incorporated into glass ionomer cement(GIC). METHODS: PMMA microspheres were manufactured with Ag2SO4(1-5%) and/or DOX(5-15%). Particle size, encapsulation efficiency and drug release were measured by light microscope, ICP, and HPLC. Microspheres were added to a dental GIC(20%w/w). Drug release and DTS were investigated. Minimum inhibitory concentration and antibacterial effects of PMMA microspheres into GIC materials were tested. RESULTS: The median diameter of 50 µm was obtained for microspheres. DOX was encapsulated at an efficiency of 8.3% using a theoretical loading of 15%DOX + 5%Ag2SO4. The Ag2SO4 encapsulation efficiency was 0.63% using a theoretical loading of 5%AgSO4. All groups showed burst release within the first day and continued released up to 15 days, with 60-83% of DOX and approximately 30% of silver. For GIC, approximately 15% of DOX and 0.18% of silver were released in a 7-day period. Microbiological results showed an antimicrobial effect against S. mutans when the lead formulation of microspheres was added. The DTS was reduced by the inclusion of microspheres. SIGNIFICANCE: PMMA microspheres containing DOX and Ag2SO4 offer a sustained antimicrobial activity for dental applications and promising potential for the biomedical field.


Assuntos
Doxiciclina , Prata , Antibacterianos/farmacologia , Doxiciclina/farmacologia , Cimentos de Ionômeros de Vidro/farmacologia , Teste de Materiais , Microesferas , Polimetil Metacrilato/farmacologia , Prata/farmacologia , Streptococcus mutans
11.
Microsc Res Tech ; 85(3): 1016-1027, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34693595

RESUMO

This study evaluated the effects of four over-the-counter (OTC) bleaching products on the properties of enamel. Extracted human molars were randomly assigned into four groups (n = 5): PD: Poladay (SDI), WG: White Teeth Global (White Teeth Global), CW: Crest3DWhite (Procter & Gamble), and HS: HiSmile (HiSmile). The hydrogen peroxide (H2 O2 ) content in each product was analyzed via titration. Twenty teeth were sectioned into quarters, embedded in epoxy resin, and polished. Each quarter-tooth surface was treated with one of the four beaching times: T0: control/no-bleaching, T14: 14 days, T28: 28 days, and T56: 56 days. Materials were applied to enamel surfaces as recommended. Enamel surfaces were examined for ultramicrohardness (UMH), elastic modulus (EM), superficial roughness (Sa), and scanning electron microscopy (SEM). Ten additional teeth were used to evaluate color and degree of demineralization (DD) (n = 5). Data were statistically tested by two-way ANOVA and Tukey's tests (α = 5%). Enamel surfaces treated with PD and WG presented UMH values significantly lower than the controls (p < .05). Elastic modulus (E) was significantly reduced at T14 and T28 for PD, and at T14 for HS (p < .05). A significant increase in Sa was observed for CW at T14 (p < .05). Color changes were observed in the PD and WG groups. Additionally, DD analysis showed significant demineralization at T56 for CW. Overall, more evident morphological alterations were observed for bleaching products with higher concentrations of H2 O2 (p < .05), PD, and WG. Over-the-counter bleaching products containing H2 O2 can significantly alter enamel properties, especially when application time is extended.


Assuntos
Clareadores , Clareadores Dentários , Clareamento Dental , Esmalte Dentário , Humanos , Peróxido de Hidrogênio/farmacologia , Microscopia Eletrônica de Varredura , Clareadores Dentários/farmacologia , Ureia
12.
Photodiagnosis Photodyn Ther ; 40: 103124, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36602068

RESUMO

BACKGROUND: Dental caries remain a significant global health challenge. Unfortunately, current dental materials lack sufficient antimicrobial power to address the pathogenic species involved in this disease. In this study the potential to load a dental resin blend (RB) with riboflavin (B2) for use in an antimicrobial photodynamic therapy (aPDT) approach was investigated. METHODS: B2 was added to our experimental RB (0.1 - 10 wt%). Upon investigating the degree of conversion and specimen integrity of the RB as a function of B2 concentration, it was determined that loading should be restricted to 0.1, 1.0, and 1.5 wt%. Subsequent investigation included water sorption (WS) and solubility (SL), as well as shear bond strength (SBS) and flexural strength (FS) of the specimens after 24 h and 28-day water storage. Lastly, the antimicrobial response of Streptococcus mutans (S. mutans) biofilm following 6 h growth and 60 s of blue LED light (1.3 J/cm2) in an aPDT-based approach was measured. RESULTS AND CONCLUSIONS: Adding up to 1.5 wt% B2 had minimal impact on the FS or SBS of the RB. However, aging for 28-days notably increased the FS by as much as 50% for the 1.5 wt% B2-loaded RB. In addition, adding 1.5 wt% B2 resulted in a significant reduction in WS/SL of the RB. Lastly, while adding B2 did not change the antimicrobial response, this was an initial study under these conditions and future investigation will seek to optimize light parameters to produce a more agonistic response. Overall, a riboflavin-loaded dental resin shows significant promise for utilization in restorative dentistry with aPDT.


Assuntos
Anti-Infecciosos , Cárie Dentária , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Cárie Dentária/tratamento farmacológico , Resinas Sintéticas/química , Riboflavina/farmacologia , Água , Streptococcus mutans , Teste de Materiais
13.
Gels ; 7(3)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34449599

RESUMO

There is an unmet need for biocompatible, anti-infective, and mechanically strong hydrogels. This study investigated the use of poly vinyl alcohol (PVA), polysaccharides, and nanocrystalline cellulose (CNC) to deliver silver in a controlled manner for possible use against oral or wound bacteria. Silver was included in solvent cast films as silver diammine fluoride (SDF) or as nitrate, sulphate, or acetate salts. Hydrogel formation was assessed by swelling determinations and silver release was measured using inductively coupled plasma methods. Antibacterial studies were performed using Gram-positive and negative bacteria turbidity assays. PVA formed homogenous, strong films with SDF and swelled gently (99% hydrolyzed) or vigorously with dissolution (88% hydrolyzed) and released silver slowly or quickly, respectively. CNC-SDF films swelled over a week and formed robust hydrogels whereas CNC alone (no silver) disintegrated after two days. SDF loaded CNC films released silver slowly over 9 days whereas films crosslinked with silver salts were less robust and swelled and released silver more quickly. All silver loaded films showed good antibacterial activity. CNC may be crosslinked with silver in the form of SDF (or any soluble silver salt) to form a robust hydrogel suitable for dental use such as for exposed periodontal debridement areas.

14.
J Appl Oral Sci ; 28: e20190753, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32638829

RESUMO

Objectives To compare the microtensile bond strength (µTBS) and depth of cure (DOC) of bulk-fill composites cured by monowave (MW) and polywave (PW) LED units using different curing times. Methodology Three composites were tested: Tetric EvoCeram Bulk Fill (TBF), Filtek Bulk Fill (FBF), and Tetric EvoCeram (T; control). Flat dentin surfaces treated with adhesive (AdheSE Universal®, Ivoclar Vivadent) were bonded with 4 mm cylindrical samples of each bulk-fill composite material (n=6) and cured with monowave (Satelec) or polywave (Bluephase Style) curing units for 10 or 20 seconds. After 24 hours, teeth were sectioned into individual 0.9 mm2 beams and tested for µTBS. Failure modes were analysed. Moreover, the DOC scrape test (IOS 4090) was completed (n=5) following the same curing protocols. Two-way ANOVA (a=0.05) was performed, isolating light-curing units. Results For samples cured with the MW light-curing unit, no significant effects were observed in the µTBS results between any of the resin composite brands and the curing times. Conversely, when resins were cured with a PW light unit, a significant effect was observed for TBF resin. In general, bulk-fill composites presented greater DOC and longer curing time resulted in higher DOC for all composites. Conclusion The µTBS of the composites to dentin was not affected by the curing mode of the resins, except for TBF cured with PW light unit. Bulk-fill composites exhibit greater DOC than conventional resin-based composites.


Assuntos
Lâmpadas de Polimerização Dentária , Cura Luminosa de Adesivos Dentários , Resinas Compostas , Materiais Dentários , Dentina , Teste de Materiais , Polimerização
15.
J. appl. oral sci ; 28: e20190753, 2020. tab, graf
Artigo em Inglês | LILACS, BBO - Odontologia | ID: biblio-1134782

RESUMO

Abstract Objectives To compare the microtensile bond strength (µTBS) and depth of cure (DOC) of bulk-fill composites cured by monowave (MW) and polywave (PW) LED units using different curing times. Methodology Three composites were tested: Tetric EvoCeram Bulk Fill (TBF), Filtek Bulk Fill (FBF), and Tetric EvoCeram (T; control). Flat dentin surfaces treated with adhesive (AdheSE Universal®, Ivoclar Vivadent) were bonded with 4 mm cylindrical samples of each bulk-fill composite material (n=6) and cured with monowave (Satelec) or polywave (Bluephase Style) curing units for 10 or 20 seconds. After 24 hours, teeth were sectioned into individual 0.9 mm2 beams and tested for µTBS. Failure modes were analysed. Moreover, the DOC scrape test (IOS 4090) was completed (n=5) following the same curing protocols. Two-way ANOVA (a=0.05) was performed, isolating light-curing units. Results For samples cured with the MW light-curing unit, no significant effects were observed in the µTBS results between any of the resin composite brands and the curing times. Conversely, when resins were cured with a PW light unit, a significant effect was observed for TBF resin. In general, bulk-fill composites presented greater DOC and longer curing time resulted in higher DOC for all composites. Conclusion The µTBS of the composites to dentin was not affected by the curing mode of the resins, except for TBF cured with PW light unit. Bulk-fill composites exhibit greater DOC than conventional resin-based composites.


Assuntos
Cura Luminosa de Adesivos Dentários , Lâmpadas de Polimerização Dentária , Teste de Materiais , Resinas Compostas , Materiais Dentários , Dentina , Polimerização
16.
J Appl Oral Sci ; 27: e20180663, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31596368

RESUMO

OBJECTIVE: To investigate the use of polymethyl methacrylate (PMMA) electrospun fiber mats containing different amounts of polyethylene oxide (PEO) as a doxycycline delivery system and to test antibacterial activity against an oral pathogen. METHODOLOGY: PMMA powders or PEO (mol wt 200 Kd) (10,20,30% w/w/) were dissolved in N, N-dimethylformamide (DMF) to obtain a final polymer concentration of 15% in DMF (w/v). 2% Doxycycline monohydrate was added to the solutions and submitted to vortex mixing. The solution was transferred to a plastic syringe and fit into a nanofiber electrospinning unit. The parameters applied were: voltage at 17.2 kV; distance of 20 cm between the needle tip and the collector plate; target speed at 2 m/min; and transverse speed at 1cm/min. Syringe pump speed was 0.15 mm/min. The drug release analysis was performed by removing aliquots of the drug-containing solution (in PBS) at specific periods. Doxycycline release was quantified using RP-HPLC. Fiber mats from all groups had their antibacterial action tested against S. mutans based on inhibition halos formed around the specimens. The experiments were performed in triplicate. Gravimetric analysis at specific periods was performed to determine any polymer loss. Morphological characterization of the electrospun fibers was completed under an optical microscope followed by SEM analysis. RESULTS: The addition of PEO to the PMMA fibers did not affect the appearance and diameter of fibers. However, increasing the %PEO caused higher doxycycline release in the first 24 h. Fibers containing 30% PEO showed statistically significant higher release when compared with the other groups. Doxycycline released from the fibers containing 20% or 30% of PEO showed effective against S. mutans. CONCLUSION: The incorporation of PEO at 20% and 30% into PMMA fiber mat resulted in effective drug release systems, with detected antibacterial activity against S. mutans.


Assuntos
Antibacterianos/farmacocinética , Doxiciclina/farmacocinética , Nanofibras/química , Polietilenoglicóis/farmacocinética , Polimetil Metacrilato/farmacocinética , Análise de Variância , Antibacterianos/química , Cromatografia Líquida de Alta Pressão/métodos , Doxiciclina/química , Imersão , Microscopia Eletrônica de Varredura , Peso Molecular , Polietilenoglicóis/química , Polimetil Metacrilato/química , Reprodutibilidade dos Testes , Streptococcus mutans/efeitos dos fármacos , Fatores de Tempo , Água/química
17.
Dent Mater ; 35(11): e286-e297, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31551153

RESUMO

OBJECTIVE: To test the effects of addition of polyacrilonitrile (PAN) nanofibers and nanocrystal cellulose (NCC)-containing PAN nanofibers on flexural properties of experimental dental composites. METHODS: 11wt% PAN in dimethylformamide (DMF) solution was electrospun at 17.2kVA and 20cm from the collector drum. NCC was added to the solution at 3wt%. Fiber mats were produced in triplicates and tested as-spun. Strips (5cm×0.5cm) were cut from the mat in an orientation parallel and perpendicular to the rotational direction of the collector drum. Tensile tests were performed and ultimate tensile strength (UTS), elastic modulus (E) and elongation at maximum stress (%) were calculated from stress/strain plots. Fiber mats were then infiltrated by resin monomers (50/50 BisGMA/TEGDMA wt%), stacked in a mold (2×15×25) and light-cured. Beams (2×2×25mm) were cut from the slabs and tested in a universal testing machine. Data were analyzed by multiple t-test and one-way ANOVA (α=0.05). RESULTS: Addition of 3% NCC resulted in higher tensile properties of the fibers. Fibers presented anisotropic behavior with higher UTS and E when tested in perpendicular orientation. The incorporation of 3% NCC-PAN nanofibers resulted in significant increase in work of fracture and flexural strength of experimental dental composite beams. SIGNIFICANCE: NCC was found to be a suitable nanoparticle to reinforce experimental dental composites by incorporation via nanofiber. This fundamental study warrants future investigation in the use of electrospun nanofibres as a way to reinforce dental composites.


Assuntos
Nanofibras , Nanopartículas , Celulose , Resinas Compostas , Módulo de Elasticidade , Teste de Materiais , Resistência à Tração
18.
J Oral Biosci ; 61(1): 37-42, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30929800

RESUMO

OBJECTIVES: Nanocrystalline cellulose (NCC) is a sustainable material with excellent mechanical properties and can potentially be used as a reinforcement agent. The objective of this work was to test the effects of NCC incorporation on the mechanical properties of electrospun polyacrylonitrile (PAN) nanofibers. METHODS: Eleven percent in weight of PAN (molecular weight 150 kD) in a dimethylformamide (DMF) solution was electrospun at 14.6 kV. Nonfunctionalized NCC was added to the solution at 1%, 2%, or 3 wt% (NCC/PAN). Suspensions were mixed and sonicated for 2 h before spinning. Strips (5 × 0.5 cm) were cut from the spun mat, parallel and perpendicular to the rotational direction of the fiber collection drum. Tensile tests were performed, and ultimate tensile strength (UTS), yield strength (YS; 0.3%), elastic modulus (E), and elongation at maximum stress (EMS, %) were calculated from stress-strain plots. Data were analyzed by multiple t tests and one-way ANOVA (α = 0.05). RESULTS: Among all groups, samples with 3 wt % NCC loading had significantly superior mechanical properties. The fiber mats showed anisotropic behavior. CONCLUSIONS: Regardless of concentration, the addition of NCC resulted in increased UTS, E, and YS of the nanofibers.


Assuntos
Nanofibras , Resinas Acrílicas , Celulose , Resistência à Tração
19.
J Mech Behav Biomed Mater ; 90: 374-380, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30408756

RESUMO

OBJECTIVES: The aim of the study was to evaluate the effect of bioactive glass (45S5 and NbG) suspensions on bond strength (µTBS), hardness, modulus of elasticity, pH and antibacterial activity of the resin-dentin interfaces after 3 months. METHODS: Groups with different concentrations (5% and 20%) of two types of glass (45S5 and NbG), and a control group (distilled water) were studied. Twenty-five extracted human third molars were etched with phosphoric acid. The data from µTBS, hardness and modulus of elasticity data were submitted to two-way ANOVA (suspension vs. time) and Holm-Sidak tests (=0.05). The antimicrobial activity data were analyzed by the Kruskal-Wallis test (α = 5%). RESULTS: The interactions were significant among groups for µTBS (p = 0.033). Significant reductions in µTBS were observed after 3 months storage in PBS for the Control and 5% NbG Groups. Suspensions with 5% and 20% 45S5 glass and 20% NbG resulted in stable µTBS values and increased hardness after 3 months. Both 20% suspensions (45S5 and NbG) increased the elastic modulus. A significant greater reduction in bacterial growth was observed with the use of 20% 45S5. CONCLUSION: Rewetting dentin with the suspension of 20% 45S5 glass prevented the reduction in bond strength; increased hardness; modulus of elasticity of the resin-dentin interface, and demonstrated antibacterial activity against Streptococcus mutans.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Cerâmica/química , Cerâmica/farmacologia , Dentina/efeitos dos fármacos , Vidro/química , Resistência à Tração , Relação Dose-Resposta a Droga , Elasticidade/efeitos dos fármacos , Dureza/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Streptococcus mutans/efeitos dos fármacos , Resistência à Tração/efeitos dos fármacos
20.
J. appl. oral sci ; 27: e20180663, 2019. tab, graf
Artigo em Inglês | LILACS, BBO - Odontologia | ID: biblio-1040224

RESUMO

Abstract Objective: To investigate the use of polymethyl methacrylate (PMMA) electrospun fiber mats containing different amounts of polyethylene oxide (PEO) as a doxycycline delivery system and to test antibacterial activity against an oral pathogen. Methodology: PMMA powders or PEO (mol wt 200 Kd) (10,20,30% w/w/) were dissolved in N, N-dimethylformamide (DMF) to obtain a final polymer concentration of 15% in DMF (w/v). 2% Doxycycline monohydrate was added to the solutions and submitted to vortex mixing. The solution was transferred to a plastic syringe and fit into a nanofiber electrospinning unit. The parameters applied were: voltage at 17.2 kV; distance of 20 cm between the needle tip and the collector plate; target speed at 2 m/min; and transverse speed at 1cm/min. Syringe pump speed was 0.15 mm/min. The drug release analysis was performed by removing aliquots of the drug-containing solution (in PBS) at specific periods. Doxycycline release was quantified using RP-HPLC. Fiber mats from all groups had their antibacterial action tested against S. mutans based on inhibition halos formed around the specimens. The experiments were performed in triplicate. Gravimetric analysis at specific periods was performed to determine any polymer loss. Morphological characterization of the electrospun fibers was completed under an optical microscope followed by SEM analysis. Results: The addition of PEO to the PMMA fibers did not affect the appearance and diameter of fibers. However, increasing the %PEO caused higher doxycycline release in the first 24 h. Fibers containing 30% PEO showed statistically significant higher release when compared with the other groups. Doxycycline released from the fibers containing 20% or 30% of PEO showed effective against S. mutans. Conclusion: The incorporation of PEO at 20% and 30% into PMMA fiber mat resulted in effective drug release systems, with detected antibacterial activity against S. mutans.


Assuntos
Polietilenoglicóis/farmacocinética , Doxiciclina/farmacocinética , Polimetil Metacrilato/farmacocinética , Nanofibras/química , Antibacterianos/farmacocinética , Polietilenoglicóis/química , Streptococcus mutans/efeitos dos fármacos , Fatores de Tempo , Água/química , Microscopia Eletrônica de Varredura , Reprodutibilidade dos Testes , Análise de Variância , Cromatografia Líquida de Alta Pressão/métodos , Doxiciclina/química , Polimetil Metacrilato/química , Imersão , Antibacterianos/química , Peso Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA