Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
medRxiv ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38826415

RESUMO

Background: Prenatally transmitted viruses can cause severe damage to the developing brain. There is unexplained variability in prenatal brain injury and postnatal neurodevelopmental outcomes, suggesting disease modifiers. Discordant outcomes among dizygotic twins could be explained by genetic susceptibly or protection. Among several well-recognized threats to the developing brain, Zika is a mosquito-borne, positive-stranded RNA virus that was originally isolated in Uganda and spread to cause epidemics in Africa, Asia, and the Americas. In the Americas, the virus caused congenital Zika syndrome and a multitude of neurodevelopmental disorders. As of now, there is no preventative treatment or cure for the adverse outcomes caused by prenatal Zika infection. The Prenatal Infection and Neurodevelopmental Genetics (PING) Consortium was initiated in 2016 to identify factors modulating prenatal brain injury and postnatal neurodevelopmental outcomes for Zika and other prenatal viral infections. Methods: The Consortium has pooled information from eight multi-site studies conducted at 23 research centers in six countries to build a growing clinical and genomic data repository. This repository is being mined to search for modifiers of virally induced brain injury and developmental outcomes. Multilateral partnerships include commitments with Children's National Hospital (USA), Instituto Nacional de Salud (Colombia), the Natural History of Zika Virus Infection in Gestation program (Brazil), and Zika Instituto Fernandes Figueira (Brazil), in addition to the Centers for Disease Control and Prevention and the National Institutes of Health. Discussion: Our goal in bringing together these sets of patient data was to test the hypothesis that personal and populational genetic differences affect the severity of brain injury after a prenatal viral infection and modify neurodevelopmental outcomes. We have enrolled 4,102 mothers and 3,877 infants with 3,063 biological samples and clinical data covering over 80 phenotypic fields and 5,000 variables. There were several notable challenges in bringing together cohorts enrolled in different studies, including variability in the timepoints evaluated and the collected clinical data and biospecimens. Thus far, we have performed whole exome sequencing on 1,226 participants. Here, we present the Consortium's formation and the overarching study design. We began our investigation with prenatal Zika infection with the goal of applying this knowledge to other prenatal infections and exposures that can affect brain development.

2.
J Oral Microbiol ; 14(1): 2123624, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36189437

RESUMO

Background: The etiology of dental caries remains poorly understood. With the advent of next-generation sequencing, a number of studies have focused on the microbial ecology of the disease. However, taxonomic associations with caries have not been consistent. Researchers have also pursued function-centric studies of the caries microbial communities aiming to identify consistently conserved functional pathways. A major question is whether changes in microbiome are a cause or a consequence of the disease. Thus, there is a critical need to define conserved functional signatures at the onset of dental caries. Methods: Since it is unethical to induce carious lesions clinically, we developed an innovative longitudinal ex-vivo model integrated with the advanced non-invasive multiphoton second harmonic generation bioimaging to spot the very early signs of dental caries, combined with 16S rRNA short amplicon sequencing and liquid chromatography-mass spectrometry-based targeted metabolomics. Findings: For the first time, we induced longitudinally monitored caries lesions validated with the scanning electron microscope. Consequently, we spotted the caries onset and, associated with it, distinguished five differentiating metabolites - Lactate, Pyruvate, Dihydroxyacetone phosphate, Glyceraldehyde 3-phosphate (upregulated) and Fumarate (downregulated). Those metabolites co-occurred with certain bacterial taxa; Streptococcus, Veillonella, Actinomyces, Porphyromonas, Fusobacterium, and Granulicatella, regardless of the abundance of other taxa. Interpretation: These findings are crucial for understanding the etiology and dynamics of dental caries, and devising targeted interventions to prevent disease progression.

3.
Front Cell Infect Microbiol ; 12: 887907, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782115

RESUMO

Despite significant healthcare advances in the 21st century, the exact etiology of dental caries remains unsolved. The past two decades have witnessed a tremendous growth in our understanding of dental caries amid the advent of revolutionary omics technologies. Accordingly, a consensus has been reached that dental caries is a community-scale metabolic disorder, and its etiology is beyond a single causative organism. This conclusion was based on a variety of microbiome studies following the flow of information along the central dogma of biology from genomic data to the end products of metabolism. These studies were facilitated by the unprecedented growth of the next- generation sequencing tools and omics techniques, such as metagenomics and metatranscriptomics, to estimate the community composition of oral microbiome and its functional potential. Furthermore, the rapidly evolving proteomics and metabolomics platforms, including nuclear magnetic resonance spectroscopy and/or mass spectrometry coupled with chromatography, have enabled precise quantification of the translational outcomes. Although the majority supports 'conserved functional changes' as indicators of dysbiosis, it remains unclear how caries dynamics impact the microbiota functions and vice versa, over the course of disease onset and progression. What compounds the situation is the host-microbiota crosstalk. Genome-wide association studies have been undertaken to elucidate the interaction of host genetic variation with the microbiome. However, these studies are challenged by the complex interaction of host genetics and environmental factors. All these complementary approaches need to be orchestrated to capture the key players in this multifactorial disease. Herein, we critically review the milestones in caries research focusing on the state-of-art singular and integrative omics studies, supplemented with a bibliographic network analysis to address the oral microbiome, the host factors, and their interactions. Additionally, we highlight gaps in the dental literature and shed light on critical future research questions and study designs that could unravel the complexities of dental caries, the most globally widespread disease.


Assuntos
Cárie Dentária , Microbiota , Estudo de Associação Genômica Ampla , Humanos , Metabolômica/métodos , Metagenômica , Microbiota/genética
4.
J Comp Neurol ; 529(13): 3336-3358, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34041754

RESUMO

Freshwater snails of the genus Biomphalaria serve as intermediate hosts for the digenetic trematode Schistosoma mansoni, the etiological agent for the most widespread form of intestinal schistosomiasis. As neuropeptide signaling in host snails can be altered by trematode infection, a neural transcriptomics approach was undertaken to identify peptide precursors in Biomphalaria glabrata, the major intermediate host for S. mansoni in the Western Hemisphere. Three transcripts that encode peptides belonging to the FMRF-NH2 -related peptide (FaRP) family were identified in B. glabrata. One transcript encoded a precursor polypeptide (Bgl-FaRP1; 292 amino acids) that included eight copies of the tetrapeptide FMRF-NH2 and single copies of FIRF-NH2 , FLRF-NH2 , and pQFYRI-NH2 . The second transcript encoded a precursor (Bgl-FaRP2; 347 amino acids) that comprised 14 copies of the heptapeptide GDPFLRF-NH2 and 1 copy of SKPYMRF-NH2 . The precursor encoded by the third transcript (Bgl-FaRP3; 287 amino acids) recapitulated Bgl-FaRP2 but lacked the full SKPYMRF-NH2 peptide. The three precursors shared a common signal peptide, suggesting a genomic organization described previously in gastropods. Immunohistochemical studies were performed on the nervous systems of B. glabrata and B. alexandrina, a major intermediate host for S. mansoni in Egypt. FMRF-NH2 -like immunoreactive (FMRF-NH2 -li) neurons were located in regions of the central nervous system associated with reproduction, feeding, and cardiorespiration. Antisera raised against non-FMRF-NH2 peptides present in the tetrapeptide and heptapeptide precursors labeled independent subsets of the FMRF-NH2 -li neurons. This study supports the participation of FMRF-NH2 -related neuropeptides in the regulation of vital physiological and behavioral systems that are altered by parasitism in Biomphalaria.


Assuntos
FMRFamida/genética , Neuropeptídeos/genética , Esquistossomose mansoni/genética , Transcriptoma/genética , Sequência de Aminoácidos , Animais , Biomphalaria , FMRFamida/análise , FMRFamida/metabolismo , Neuropeptídeos/análise , Neuropeptídeos/metabolismo , Imagem Óptica/métodos , Schistosoma mansoni/genética , Schistosoma mansoni/isolamento & purificação , Esquistossomose mansoni/metabolismo
5.
BMC Bioinformatics ; 22(1): 71, 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33593271

RESUMO

BACKGROUND: Specialized data structures are required for online algorithms to efficiently handle large sequencing datasets. The counting quotient filter (CQF), a compact hashtable, can efficiently store k-mers with a skewed distribution. RESULT: Here, we present the mixed-counters quotient filter (MQF) as a new variant of the CQF with novel counting and labeling systems. The new counting system adapts to a wider range of data distributions for increased space efficiency and is faster than the CQF for insertions and queries in most of the tested scenarios. A buffered version of the MQF can offload storage to disk, trading speed of insertions and queries for a significant memory reduction. The labeling system provides a flexible framework for assigning labels to member items while maintaining good data locality and a concise memory representation. These labels serve as a minimal perfect hash function but are ~ tenfold faster than BBhash, with no need to re-analyze the original data for further insertions or deletions. CONCLUSIONS: The MQF is a flexible and efficient data structure that extends our ability to work with high throughput sequencing data.


Assuntos
Metadados , Software , Algoritmos , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA
6.
BMC Genomics ; 22(1): 118, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33581720

RESUMO

BACKGROUND: The homologous recombination (HR) pathway is largely inactive in early embryos prior to the first cell division, making it difficult to achieve targeted gene knock-ins. The homology-mediated end joining (HMEJ)-based strategy has been shown to increase knock-in efficiency relative to HR, non-homologous end joining (NHEJ), and microhomology-mediated end joining (MMEJ) strategies in non-dividing cells. RESULTS: By introducing gRNA/Cas9 ribonucleoprotein complex and a HMEJ-based donor template with 1 kb homology arms flanked by the H11 safe harbor locus gRNA target site, knock-in rates of 40% of a 5.1 kb bovine sex-determining region Y (SRY)-green fluorescent protein (GFP) template were achieved in Bos taurus zygotes. Embryos that developed to the blastocyst stage were screened for GFP, and nine were transferred to recipient cows resulting in a live phenotypically normal bull calf. Genomic analyses revealed no wildtype sequence at the H11 target site, but rather a 26 bp insertion allele, and a complex 38 kb knock-in allele with seven copies of the SRY-GFP template and a single copy of the donor plasmid backbone. An additional minor 18 kb allele was detected that looks to be a derivative of the 38 kb allele resulting from the deletion of an inverted repeat of four copies of the SRY-GFP template. CONCLUSION: The allelic heterogeneity in this biallelic knock-in calf appears to have resulted from a combination of homology directed repair, homology independent targeted insertion by blunt-end ligation, NHEJ, and rearrangement following editing of the gRNA target site in the donor template. This study illustrates the potential to produce targeted gene knock-in animals by direct cytoplasmic injection of bovine embryos with gRNA/Cas9, although further optimization is required to ensure a precise single-copy gene integration event.


Assuntos
Sistemas CRISPR-Cas , Zigoto , Animais , Bovinos/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Reparo do DNA por Junção de Extremidades , Feminino , Edição de Genes , Técnicas de Introdução de Genes , Masculino
7.
Genes (Basel) ; 11(9)2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887425

RESUMO

Dogs provide highly valuable models of human disease due to the similarity in phenotype presentation and the ease of genetic analysis. Seven Saluki puppies were investigated for neurological abnormalities including seizures and altered behavior. Magnetic resonance imaging showed a diffuse, marked reduction in cerebral cortical thickness, and symmetrical T2 hyperintensity in specific brain regions. Cerebral cortical atrophy with vacuolation (status spongiosus) was noted on necropsy. Genome-wide association study of 7 affected and 28 normal Salukis revealed a genome-wide significantly associated region on CFA 35. Whole-genome sequencing of three confirmed cases from three different litters revealed a homozygous missense variant within the aldehyde dehydrogenase 5 family member A1 (ALDH5A1) gene (XM_014110599.2: c.866G>A; XP_013966074.2: p.(Gly288Asp). ALDH5A1 encodes a succinic semialdehyde dehydrogenase (SSADH) enzyme critical in the gamma-aminobutyric acid neurotransmitter (GABA) metabolic pathway. Metabolic screening of affected dogs showed markedly elevated gamma-hydroxybutyric acid in serum, cerebrospinal fluid (CSF) and brain, and elevated succinate semialdehyde in urine, CSF and brain. SSADH activity in the brain of affected dogs was low. Affected Saluki dogs had striking similarities to SSADH deficiency in humans although hydroxybutyric aciduria was absent in affected dogs. ALDH5A1-related SSADH deficiency in Salukis provides a unique translational large animal model for the development of novel therapeutic strategies.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Deficiências do Desenvolvimento/genética , Mutação de Sentido Incorreto/genética , Succinato-Semialdeído Desidrogenase/deficiência , Succinato-Semialdeído Desidrogenase/genética , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Líquido Cefalorraquidiano/metabolismo , Modelos Animais de Doenças , Cães , Feminino , Testes Genéticos/métodos , Estudo de Associação Genômica Ampla/métodos , Masculino , Redes e Vias Metabólicas/genética , Fenótipo , Convulsões/genética , Convulsões/metabolismo , Ácido gama-Aminobutírico/genética
8.
Sci Rep ; 10(1): 6558, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32300136

RESUMO

Mucopolysaccharidosis (MPS) is a metabolic storage disorder caused by the deficiency of any lysosomal enzyme required for the breakdown of glycosaminoglycans. A 15-month-old Boston Terrier presented with clinical signs consistent with lysosomal storage disease including corneal opacities, multifocal central nervous system disease and progressively worsening clinical course. Diagnosis was confirmed at necropsy based on histopathologic evaluation of multiple organs demonstrating accumulation of mucopolysaccharides. Whole genome sequencing was used to uncover a frame-shift insertion affecting the alpha-L-iduronidase (IDUA) gene (c.19_20insCGGCCCCC), a mutation confirmed in another Boston Terrier presented 2 years later with a similar clinical picture. Both dogs were homozygous for the IDUA mutation and shared coat colors not recognized as normal for the breed by the American Kennel Club. In contrast, the mutation was not detected in 120 unrelated Boston Terriers as well as 202 dogs from other breeds. Recent inbreeding to select for recessive and unusual coat colors may have concentrated this relatively rare allele in the breed. The identification of the variant enables ante-mortem diagnosis of similar cases and selective breeding to avoid the spread of this disease in the breed. Boston Terriers carrying this variant represent a promising model for MPS I with neurological abnormalities in humans.


Assuntos
Cães/genética , Mucopolissacaridose I/genética , Mucopolissacaridose I/veterinária , Mutação/genética , Sequenciamento Completo do Genoma , Animais , Sequência de Bases , Feminino , Mucopolissacaridose I/diagnóstico por imagem , Mucopolissacaridose I/patologia
9.
Nat Biotechnol ; 38(2): 245, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31992864

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

10.
Nat Biotechnol ; 38(2): 225-232, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31591551

RESUMO

Genome editing followed by reproductive cloning was previously used to produce two hornless dairy bulls. We crossed one genome-edited dairy bull, homozygous for the dominant PC Celtic POLLED allele, with horned cows (pp) and obtained six heterozygous (PCp) polled calves. The calves had no horns and were otherwise healthy and phenotypically unremarkable. We conducted whole-genome sequencing of all animals using an Illumina HiSeq4000 to achieve ~20× coverage. Bioinformatics analyses revealed the bull was a compound heterozygote, carrying one naturally occurring PC Celtic POLLED allele and an allele containing an additional introgression of the homology-directed repair donor plasmid along with the PC Celtic allele. These alleles segregated in the offspring of this bull, and inheritance of either allele produced polled calves. No other unintended genomic alterations were observed. These data can be used to inform conversations in the scientific community, with regulatory authorities and with the public around 'intentional genomic alterations' and future regulatory actions regarding genome-edited animals.


Assuntos
Bovinos/genética , Edição de Genes , Genoma , Alelos , Animais , Sequência de Bases , Cruzamento , Quimerismo , Feminino , Feto/fisiologia , Loci Gênicos , Genótipo , Cornos , Masculino , Fenótipo , Filogenia , Plasmídeos/genética , Polimorfismo de Nucleotídeo Único/genética
12.
Hum Mol Genet ; 28(10): 1726-1737, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30689861

RESUMO

Mutations in IRF6, TFAP2A and GRHL3 cause orofacial clefting syndromes in humans. However, Tfap2a and Grhl3 are also required for neurulation in mice. Here, we found that homeostasis of Irf6 is also required for development of the neural tube and associated structures. Over-expression of Irf6 caused exencephaly, a rostral neural tube defect, through suppression of Tfap2a and Grhl3 expression. Conversely, loss of Irf6 function caused a curly tail and coincided with a reduction of Tfap2a and Grhl3 expression in tail tissues. To test whether Irf6 function in neurulation was conserved, we sequenced samples obtained from human cases of spina bifida and anencephaly. We found two likely disease-causing variants in two samples from patients with spina bifida. Overall, these data suggest that the Tfap2a-Irf6-Grhl3 genetic pathway is shared by two embryologically distinct morphogenetic events that previously were considered independent during mammalian development. In addition, these data suggest new candidates to delineate the genetic architecture of neural tube defects and new therapeutic targets to prevent this common birth defect.


Assuntos
Proteínas de Ligação a DNA/genética , Fatores Reguladores de Interferon/genética , Neurulação/genética , Fator de Transcrição AP-2/genética , Fatores de Transcrição/genética , Animais , Sequência Conservada/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Camundongos , Mutação , Tubo Neural/crescimento & desenvolvimento , Tubo Neural/patologia , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/patologia , Transdução de Sinais/genética , Disrafismo Espinal/genética , Disrafismo Espinal/patologia
13.
PLoS Genet ; 14(12): e1007850, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30521570

RESUMO

Domestic dog breeds exhibit remarkable morphological variations that result from centuries of artificial selection and breeding. Identifying the genetic changes that contribute to these variations could provide critical insights into the molecular basis of tissue and organismal morphogenesis. Bulldogs, French Bulldogs and Boston Terriers share many morphological and disease-predisposition traits, including brachycephalic skull morphology, widely set eyes and short stature. Unlike other brachycephalic dogs, these breeds also exhibit vertebral malformations that result in a truncated, kinked tail (screw tail). Whole genome sequencing of 100 dogs from 21 breeds identified 12.4 million bi-allelic variants that met inclusion criteria. Whole Genome Association of these variants with the breed defining phenotype of screw tail was performed using 10 cases and 84 controls and identified a frameshift mutation in the WNT pathway gene DISHEVELLED 2 (DVL2) (Chr5: 32195043_32195044del, p = 4.37 X 10-37) as the most strongly associated variant in the canine genome. This DVL2 variant was fixed in Bulldogs and French Bulldogs and had a high allele frequency (0.94) in Boston Terriers. The DVL2 variant segregated with thoracic and caudal vertebral column malformations in a recessive manner with incomplete and variable penetrance for thoracic vertebral malformations between different breeds. Importantly, analogous frameshift mutations in the human DVL1 and DVL3 genes cause Robinow syndrome, a congenital disorder characterized by similar craniofacial, limb and vertebral malformations. Analysis of the canine DVL2 variant protein showed that its ability to undergo WNT-induced phosphorylation is reduced, suggesting that altered WNT signaling may contribute to the Robinow-like syndrome in the screwtail breeds.


Assuntos
Anormalidades Craniofaciais/veterinária , Proteínas Desgrenhadas/genética , Doenças do Cão/genética , Cães/genética , Nanismo/veterinária , Deformidades Congênitas dos Membros/veterinária , Anormalidades Urogenitais/veterinária , Sequência de Aminoácidos , Animais , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/metabolismo , Proteínas Desgrenhadas/metabolismo , Doenças do Cão/metabolismo , Cães/anatomia & histologia , Cães/classificação , Nanismo/genética , Nanismo/metabolismo , Feminino , Mutação da Fase de Leitura , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Deformidades Congênitas dos Membros/genética , Deformidades Congênitas dos Membros/metabolismo , Masculino , Compostos de Organossilício , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Cauda/anatomia & histologia , Anormalidades Urogenitais/genética , Anormalidades Urogenitais/metabolismo , Via de Sinalização Wnt/genética
14.
G3 (Bethesda) ; 8(8): 2773-2780, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-29945969

RESUMO

Canine neuroaxonal dystrophy (NAD) is a recessive, degenerative neurological disease of young adult Rottweiler dogs (Canis lupus familiaris) characterized pathologically by axonal spheroids primarily targeting sensory axon terminals. A genome-wide association study of seven Rottweilers affected with NAD and 42 controls revealed a significantly associated region on canine chromosome 5 (CFA 5). Homozygosity within the associated region narrowed the critical interval to a 4.46 Mb haplotype (CFA5:11.28 Mb - 15.75 Mb; CanFam3.1) that associated with the phenotype. Whole-genome sequencing of two histopathologically confirmed canine NAD cases and 98 dogs unaffected with NAD revealed a homozygous missense mutation within the Vacuolar Protein Sorting 11 (VPS11) gene (g.14777774T > C; p.H835R) that was associated with the phenotype. These findings present the opportunity for an antemortem test for confirming NAD in Rottweilers where the allele frequency was estimated at 2.3%. VPS11 mutations have been associated with a degenerative leukoencephalopathy in humans, and VSP11 should additionally be included as a candidate gene for unexplained cases of human NAD.


Assuntos
Doenças do Cão/genética , Mutação de Sentido Incorreto , Distrofias Neuroaxonais/genética , Proteínas de Transporte Vesicular/genética , Animais , Cromossomos/genética , Doenças do Cão/patologia , Cães , Haplótipos , Distrofias Neuroaxonais/patologia , Distrofias Neuroaxonais/veterinária
15.
BMC Res Notes ; 10(1): 729, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29228974

RESUMO

OBJECTIVE: Globally, more than 200 million people live at risk of the neglected tropical disease schistosomiasis (or snail fever). Larval schistosomes require the presence of specific snail species that act as intermediate hosts, supporting their multiplication and transformation into forms that can infect humans. This project was designed to generate a transcriptome from the central nervous system (CNS) of Biomphalaria alexandrina, the major intermediate host for Schistosoma mansoni in Egypt. RESULTS: A transcriptome was generated from five pooled central nervous systems dissected from uninfected specimens of B. alexandrina. Raw Illumina RNA-seq data (~ 20.3 million paired end reads of 150 base pairs length each) generated a transcriptome consisting of 144,213 transcript elements with an N50 contig size of 716 base pairs. Orthologs of 15,246 transcripts and homologs for an additional 16,810 transcripts were identified in the UniProtKB/Swiss-Prot database. The B. alexandrina CNS transcriptome provides a resource for future research exploring parasite-host interactions in a simpler nervous system. Moreover, increased understanding of the neural signaling mechanisms involved in the response of B. alexandrina to infection by S. mansoni larvae could lead to novel and highly specific strategies for the control of snail populations.


Assuntos
Biomphalaria/genética , Sistema Nervoso Central/metabolismo , Interações Hospedeiro-Parasita/genética , Esquistossomose/parasitologia , Transcriptoma/genética , Animais , Regulação da Expressão Gênica , Anotação de Sequência Molecular
16.
Birth Defects Res ; 109(2): 169-179, 2017 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-27933721

RESUMO

BACKGROUND: Single genetic variants can affect multiple tissues during development. Thus it is possible that disruption of shared gene regulatory networks might underlie syndromic presentations. In this study, we explore this idea through examination of two critical developmental programs that control orofacial and neural tube development and identify shared regulatory factors and networks. Identification of these networks has the potential to yield additional candidate genes for poorly understood developmental disorders and assist in modeling and perhaps managing risk factors to prevent morbidly and mortality. METHODS: We reviewed the literature to identify genes common between orofacial and neural tube defects and development. We then conducted a bioinformatic analysis to identify shared molecular targets and pathways in the development of these tissues. Finally, we examine publicly available RNA-Seq data to identify which of these genes are expressed in both tissues during development. RESULTS: We identify common regulatory factors in orofacial and neural tube development. Pathway enrichment analysis shows that folate, cancer and hedgehog signaling pathways are shared in neural tube and orofacial development. Developing neural tissues differentially express mouse exencephaly and cleft palate genes, whereas developing orofacial tissues were enriched for both clefting and neural tube defect genes. CONCLUSION: These data suggest that key developmental factors and pathways are shared between orofacial and neural tube defects. We conclude that it might be most beneficial to focus on common regulatory factors and pathways to better understand pathology and develop preventative measures for these birth defects. Birth Defects Research 109:169-179, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Anormalidades Múltiplas/genética , Fenda Labial/genética , Fissura Palatina/genética , Regulação da Expressão Gênica no Desenvolvimento , Defeitos do Tubo Neural/genética , Neurulação/genética , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/patologia , Animais , Fenda Labial/metabolismo , Fenda Labial/patologia , Fissura Palatina/metabolismo , Fissura Palatina/patologia , Biologia Computacional , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Mineração de Dados , Desenvolvimento Embrionário/genética , Redes Reguladoras de Genes , Humanos , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Camundongos , Mutação , Tubo Neural/anormalidades , Tubo Neural/crescimento & desenvolvimento , Tubo Neural/metabolismo , Defeitos do Tubo Neural/metabolismo , Defeitos do Tubo Neural/patologia , Organogênese/genética , Transdução de Sinais , Fator de Transcrição AP-2/genética , Fator de Transcrição AP-2/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
G3 (Bethesda) ; 7(1): 109-117, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-27852011

RESUMO

The importance of the Gallus gallus (chicken) as a model organism and agricultural animal merits a continuation of sequence assembly improvement efforts. We present a new version of the chicken genome assembly (Gallus_gallus-5.0; GCA_000002315.3), built from combined long single molecule sequencing technology, finished BACs, and improved physical maps. In overall assembled bases, we see a gain of 183 Mb, including 16.4 Mb in placed chromosomes with a corresponding gain in the percentage of intact repeat elements characterized. Of the 1.21 Gb genome, we include three previously missing autosomes, GGA30, 31, and 33, and improve sequence contig length 10-fold over the previous Gallus_gallus-4.0. Despite the significant base representation improvements made, 138 Mb of sequence is not yet located to chromosomes. When annotated for gene content, Gallus_gallus-5.0 shows an increase of 4679 annotated genes (2768 noncoding and 1911 protein-coding) over those in Gallus_gallus-4.0. We also revisited the question of what genes are missing in the avian lineage, as assessed by the highest quality avian genome assembly to date, and found that a large fraction of the original set of missing genes are still absent in sequenced bird species. Finally, our new data support a detailed map of MHC-B, encompassing two segments: one with a highly stable gene copy number and another in which the gene copy number is highly variable. The chicken model has been a critical resource for many other fields of study, and this new reference assembly will substantially further these efforts.


Assuntos
Galinhas/genética , Genoma/genética , Anotação de Sequência Molecular , Análise de Sequência de DNA , Animais , Cromossomos Artificiais Bacterianos , Biologia Computacional , Mapeamento de Sequências Contíguas
18.
Gigascience ; 5(1): 33, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27485233

RESUMO

BACKGROUND: Porites astreoides is a ubiquitous species of coral on modern Caribbean reefs that is resistant to increasing temperatures, overfishing, and other anthropogenic impacts that have threatened most other coral species. We assembled and annotated a transcriptome from this coral using Illumina sequences from three different developmental stages collected over several years: free-swimming larvae, newly settled larvae, and adults (>10 cm in diameter). This resource will aid understanding of coral calcification, larval settlement, and host-symbiont interactions. FINDINGS: A de novo transcriptome for the P. astreoides holobiont (coral plus algal symbiont) was assembled using 594 Mbp of raw Illumina sequencing data generated from five age-specific cDNA libraries. The new transcriptome consists of 867 255 transcript elements with an average length of 685 bases. The isolated P. astreoides assembly consists of 129 718 transcript elements with an average length of 811 bases, and the isolated Symbiodinium sp. assembly had 186 177 transcript elements with an average length of 1105 bases. CONCLUSIONS: This contribution to coral transcriptome data provides a valuable resource for researchers studying the ontogeny of gene expression patterns within both the coral and its dinoflagellate symbiont.


Assuntos
Antozoários/crescimento & desenvolvimento , Dinoflagellida/genética , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Animais , Antozoários/genética , Antozoários/parasitologia , Região do Caribe , Recifes de Corais , Dinoflagellida/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Biblioteca Gênica , Simbiose
19.
J Invest Dermatol ; 133(1): 68-77, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22931925

RESUMO

IFN regulatory factor 6 (IRF6) is a transcription factor that, in mammals, is required for the differentiation of skin, breast epithelium, and oral epithelium. However, the transcriptional targets that mediate these effects are currently unknown. In zebrafish and frog embryos, Irf6 is necessary for differentiation of the embryonic superficial epithelium, or periderm. Here we use microarrays to identify genes that are expressed in the zebrafish periderm and whose expression is inhibited by a dominant-negative variant of Irf6 (dnIrf6). These methods identify Grainyhead-like 3 (Grhl3), an ancient regulator of the epidermal permeability barrier, as acting downstream of Irf6. In human keratinocytes, IRF6 binds conserved elements near the GRHL3 [corrected] promoter. We show that one of these elements has enhancer activity in human keratinocytes and zebrafish periderm, suggesting that Irf6 directly stimulates Grhl3 expression in these tissues. Simultaneous inhibition of grhl1 and grhl3 disrupts periderm differentiation in zebrafish, and, intriguingly, forced grhl3 expression restores periderm markers in both zebrafish injected with dnIrf6 and frog embryos depleted of Irf6. Finally, in Irf6-deficient mouse embryos, Grhl3 expression in the periderm and oral epithelium is virtually absent. These results indicate that Grhl3 is a key effector of Irf6 in periderm differentiation.


Assuntos
Proteínas de Ligação a DNA/biossíntese , Camadas Germinativas/crescimento & desenvolvimento , Camadas Germinativas/metabolismo , Fatores Reguladores de Interferon/metabolismo , Fatores de Transcrição/biossíntese , Proteínas de Peixe-Zebra/biossíntese , Proteínas de Peixe-Zebra/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento/genética , Inativação Gênica , Camadas Germinativas/embriologia , Humanos , Queratinócitos/metabolismo , Camundongos , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA