Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dev Neurobiol ; 83(3-4): 104-124, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37092850

RESUMO

The patterning of binocular vision requires distinct molecular pathways for inputs arising from each side of the nervous system. Recent studies have demonstrated important roles for members of the Ten-m/Odz/teneurin family in the development of ipsilateral retinal projections. Here, we further highlight the significance of this gene family in visual development by identifying a role for Ten-m4 during the formation of the ipsilateral projection in the mouse. Ten-m4 was found to be expressed in the retina, dorsal lateral geniculate nucleus (dLGN), superior colliculus (SC), and primary visual cortex (V1) during development. Anterograde and retrograde tracing experiments in Ten-m4 knockout (KO) mice revealed a specific increase in ipsilateral retinal ganglion cells projecting to dLGN and SC. This increase was most prominent in regions corresponding to temporal retina. Consistent with this, EphB1 expression in the retina around the time of decussation was enhanced in this temporal region for KO mice, suggesting that the increased size of the ipsilateral population arises due to an increased number of retinal ganglion cells remaining ipsilaterally at the optic chiasm due to EphB1-mediated repulsion. The ectopic ipsilaterally targeted retinal ganglion cell projection observed in Ten-m4 KOs was associated with changes in response to ethologically relevant visual stimuli. Together, these data demonstrate a requirement for Ten-m4 in the establishment of ipsilateral projections from the retina, which likely acts in combination with other Ten-m members (Ten-m2 and Ten-m3) to promote the formation of functional binocular circuits.


Assuntos
Células Ganglionares da Retina , Vias Visuais , Animais , Camundongos , Células Ganglionares da Retina/metabolismo , Retina , Colículos Superiores/metabolismo , Visão Binocular/fisiologia , Corpos Geniculados/fisiologia , Camundongos Knockout
2.
Front Neuroanat ; 13: 90, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31708753

RESUMO

Environmental enrichment can dramatically affect both the development and function of neural circuits. This is accomplished, at least in part, by the regulation of inhibitory cellular networks and related extracellular matrix glycoprotein structures known as perineuronal nets. The degree to which enhanced housing can influence brain areas involved in the planning and execution of actions is not well known. We examined the effect of enriching mice from birth on parvalbumin expression and perineuronal net formation in developing and adult striatum. This input nucleus of the basal ganglia consists of topographically discernible regions that serve different functions, providing a means of simultaneously examining the influence of environmental factors on discrete, but related networks. Greater densities of striatal parvalbumin positive cells and wisteria floribunda agglutinin labelled perineuronal nets were present in enriched pups during the second postnatal week, primarily within the lateral portion of the nucleus. Housing conditions continued to have an impact into adulthood, with enriched mice exhibiting higher parvalbumin positive cell densities in both medial and lateral striatum. Curiously, no differences due to housing conditions were detected in striatal perineuronal net densities of mature animals. The degree of overlap between striatal parvalbumin expression and perineuronal net formation was also increased, suggesting that heightened neural activity associated with enrichment may have contributed to greater engagement of networks affiliated with cells that express the calcium binding protein. Brain derived neurotrophic factor, an important regulator of inhibitory network maturation, is also subtly, but significantly affected within the striatum of enriched cohorts. Together, these findings suggest that environmental enrichment can exert cell specific effects within different divisions of an area vital for the regulation of action.

3.
eNeuro ; 6(6)2019.
Artigo em Inglês | MEDLINE | ID: mdl-31767573

RESUMO

Environmental enrichment (EE) has been shown to improve neural function via the regulation of cortical plasticity. Its capacity to induce functional and/or anatomical repair of miswired circuits is unknown. Ten-m3 knock-out (KO) mice exhibit a highly stereotyped and profound miswiring of ipsilateral retinogeniculate axons and associated deficits in binocularly-mediated visual behavior. We determined whether, and when, EE can drive the repair of subcortical wiring deficits by analyzing Ten-m3 KO and wild-type (WT) mice that were enriched for six weeks from adulthood, weaning or birth in comparison to standard-housed (SE) controls. Six weeks of EE initiated from birth, but not later, induced a significant reduction in the area occupied by ipsilateral retinogeniculate terminals in KOs. No EE-induced correction of mistargeted axons was observed at postnatal day (P)7, indicating that this intervention impacts pruning rather than initial targeting of axons. This reduction was most prominent in the ventrolateral region of the dorsal lateral geniculate nucleus (dLGN), suggesting a preferential pruning of the most profoundly mistargeted axons. EE can thus partially repair a specific, subcortical axonal wiring deficit, but only during an early, developmentally-restricted time window.


Assuntos
Axônios/metabolismo , Encéfalo/crescimento & desenvolvimento , Período Crítico Psicológico , Meio Ambiente , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Vias Visuais/crescimento & desenvolvimento , Animais , Encéfalo/metabolismo , Abrigo para Animais , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/genética , Córtex Visual/crescimento & desenvolvimento , Córtex Visual/metabolismo , Vias Visuais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA