Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Mult Scler J Exp Transl Clin ; 9(3): 20552173231195879, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37641618

RESUMO

Background: Functional connectome fingerprinting can identify individuals based on their functional connectome. Previous studies relied mostly on short intervals between fMRI acquisitions. Objective: This cohort study aimed to determine the stability of connectome-based identification and their underlying signatures in patients with multiple sclerosis and healthy individuals with long follow-up intervals. Methods: We acquired resting-state fMRI in 70 patients with multiple sclerosis and 273 healthy individuals with long follow-up times (up to 4 and 9 years, respectively). Using functional connectome fingerprinting, we examined the stability of the connectome and additionally investigated which regions, connections and networks supported individual identification. Finally, we predicted cognitive and behavioural outcome based on functional connectivity. Results: Multiple sclerosis patients showed connectome stability and identification accuracies similar to healthy individuals, with longer time delays between imaging sessions being associated with accuracies dropping from 89% to 76%. Lesion load, brain atrophy or cognitive impairment did not affect identification accuracies within the range of disease severity studied. Connections from the fronto-parietal and default mode network were consistently most distinctive, i.e., informative of identity. The functional connectivity also allowed the prediction of individual cognitive performances. Conclusion: Our results demonstrate that discriminatory signatures in the functional connectome are stable over extended periods of time in multiple sclerosis, resulting in similar identification accuracies and distinctive long-lasting functional connectome fingerprinting signatures in patients and healthy individuals.

2.
Neurol Clin Pract ; 13(2): e200123, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36891462

RESUMO

Purpose of Review: The incidence of sport-related concussion (SRC) has been increasing in different sports and its impact on long-term cognitive function is increasingly recognized. In this study, we review the epidemiology, neuropathophysiology, clinical symptoms, and long-term consequences of SRC with a specific focus on cognition. Recent Findings: Repeated concussions are associated with an increased risk of several neurologic diseases and long-term cognitive deficits. To improve cognitive outcomes in athletes with SRC, standardized guidelines for the assessment and management of SRC are vital. However, current concussion management guidelines lack procedures for rehabilitating acute and long-term cognitive symptoms. Summary: Increased awareness for the management and rehabilitation of cognitive symptoms in SRC is needed in all clinical neurologists treating professional and amateur athletes. We propose cognitive training as a prehabilitation tool to alleviate the severity of cognitive symptoms and as a rehabilitative tool to improve cognitive recovery postinjury.

3.
Commun Biol ; 5(1): 261, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35332230

RESUMO

The prediction of inter-individual behavioural differences from neuroimaging data is a rapidly evolving field of research focusing on individualised methods to describe human brain organisation on the single-subject level. One method that harnesses such individual signatures is functional connectome fingerprinting, which can reliably identify individuals from large study populations. However, the precise relationship between functional signatures underlying fingerprinting and behavioural prediction remains unclear. Expanding on previous reports, here we systematically investigate the link between discrimination and prediction on different levels of brain network organisation (individual connections, network interactions, topographical organisation, and connection variability). Our analysis revealed a substantial divergence between discriminatory and predictive connectivity signatures on all levels of network organisation. Across different brain parcellations, thresholds, and prediction algorithms, we find discriminatory connections in higher-order multimodal association cortices, while neural correlates of behaviour display more variable distributions. Furthermore, we find the standard deviation of connections between participants to be significantly higher in fingerprinting than in prediction, making inter-individual connection variability a possible separating marker. These results demonstrate that participant identification and behavioural prediction involve highly distinct functional systems of the human connectome. The present study thus calls into question the direct functional relevance of connectome fingerprints.


Assuntos
Conectoma , Encéfalo/diagnóstico por imagem , Conectoma/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Descanso
4.
Front Neurol ; 11: 507, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670178

RESUMO

Objective: Multiple sclerosis (MS) is characterized by impairments in basic cognitive functions such as information processing speed as well as in more complex, higher-order domains such as social cognition. However, as these deficits often co-occur, it has remained challenging to determine whether they have a specific pathological basis or are driven by shared biology. Methods: To identify neural signatures of social cognition deficits in MS, data were analyzed from n = 29 patients with relapsing-remitting MS and n = 29 healthy controls matched for age, sex, and education. We used neuropsychological assessments of information processing speed, attention, learning, working memory, and relevant aspects of social cognition (theory of mind, emotion recognition (ER), empathy) and employed neuroimaging of CNS networks using resting-state functional connectivity. Results: MS patients showed significant deficits in verbal learning and memory, as well as implicit ER. Performance in these domains was uncorrelated. Functional connectivity analysis identified a distinct network characterized by significant associations between poorer ER and lower connectivity of the fusiform gyrus (FFG) with the right lateral occipital cortex, which also showed lower connectivity in patients compared to controls. Moreover, while ER was correlated with MS symptoms such as fatigue and motor/sensory functioning on a behavioral level, FFG connectivity signatures of social cognition deficits showed no overlap with these symptoms. Conclusions: Our analyses identify distinct functional connectivity signatures of social cognition deficits in MS, indicating that these alterations may occur independently from those in other neuropsychological functions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA