Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(16): e2303379, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38380561

RESUMO

Patient-Derived Organoids (PDO) and Xenografts (PDX) are the current gold standards for patient-derived models of cancer (PDMC). Nevertheless, how patient tumor cells evolve in these models and the impact on drug response remains unclear. Herein, the transcriptomic and chromatin accessibility landscapes of matched colorectal cancer (CRC) PDO, PDX, PDO-derived PDX (PDOX), and original patient tumors (PT) are compared. Two major remodeling axes are discovered. The first axis delineates PDMC from PT, and the second axis distinguishes PDX and PDO. PDOX are more similar to PDX than PDO, indicating the growth environment is a driving force for chromatin adaptation. Transcription factors (TF) that differentially bind to open chromatins between matched PDO and PDOX are identified. Among them, KLF14 and EGR2 footprints are enriched in PDOX relative to matched PDO, and silencing of KLF14 or EGR2 promoted tumor growth. Furthermore, EPHA4, a shared downstream target gene of KLF14 and EGR2, altered tumor sensitivity to MEK inhibitor treatment. Altogether, patient-derived CRC cells undergo both common and distinct chromatin remodeling in PDO and PDX/PDOX, driven largely by their respective microenvironments, which results in differences in growth and drug sensitivity and needs to be taken into consideration when interpreting their ability to predict clinical outcome.


Assuntos
Montagem e Desmontagem da Cromatina , Neoplasias Colorretais , Organoides , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Humanos , Montagem e Desmontagem da Cromatina/genética , Camundongos , Animais , Organoides/metabolismo , Modelos Animais de Doenças
2.
Cancer Res Commun ; 3(9): 1952-1958, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37772998

RESUMO

Patient-derived organoids are a useful platform for identification and testing of novel precision oncology approaches. Patient-derived organoids are generated by direct culture of patient samples. However, prior to development into patient-derived organoids, these samples are often processed for clinical use, opening the potential for contamination by Mycoplasma and other microbes. While most microbes can be detected by visual inspection, Mycoplasma can go undetected and have substantial impacts on assay results. Given the increased use of patient-derived organoids, there is a growing need for a standardized protocol to detect and remove Mycoplasma from organoid models. In the current study, we report a procedure for Mycoplasma removal by passaging organoids through mice as patient-derived organoid xenografts. In vivo passage of patient-derived organoids followed by re-establishment was 100% effective at decontaminating colorectal patient-derived organoids (n = 9), based on testing with the Sigma LookOut Mycoplasma PCR Detection Kit. This process can serve as a method to re-establish contaminated patient-derived organoids, which represent precious models to study patient-specific genomic features and treatment responses. SIGNIFICANCE: Organoids are valuable models of cancer. Mycoplasma contamination can alter organoid drug sensitivity, so there is a need for a standardized protocol to detect and remove Mycoplasma from organoids. We report a simple procedure for removing Mycoplasma from organoids via in vivo passaging through mice followed by re-establishment of organoids.


Assuntos
Neoplasias Colorretais , Mycoplasma , Humanos , Animais , Camundongos , Organoides
4.
J Proteome Res ; 22(6): 1923-1935, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37126456

RESUMO

Reported here is the application of three protein folding stability profiling techniques (including the stability of proteins from rates of oxidation, thermal protein profiling, and limited proteolysis approaches) to identify differentially stabilized proteins in six patient-derived colorectal cancer (CRC) cell lines with different oxaliplatin sensitivities and eight CRC patient-derived xenografts (PDXs) derived from two of the patient derived cell lines with different oxaliplatin sensitivities. Compared to conventional protein expression level analyses, which were also performed here, the stability profiling techniques identified both unique and novel proteins and cellular components that differentiated the sensitive and resistant samples including 36 proteins that were differentially stabilized in at least two techniques in both the cell line and PDX studies of oxaliplatin resistance. These 36 differentially stabilized proteins included 10 proteins previously connected to cancer chemoresistance. Two differentially stabilized proteins, fatty acid synthase and elongation factor 2, were functionally validated in vitro and found to be druggable protein targets with biological functions that can be modulated to improve the efficacy of CRC chemotherapy. These results add to our understanding of CRC oxaliplatin resistance, suggest biomarker candidates for predicting oxaliplatin sensitivity in CRC, and inform new strategies for overcoming chemoresistance in CRC.


Assuntos
Neoplasias Colorretais , Animais , Humanos , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Biomarcadores , Modelos Animais de Doenças , Dobramento de Proteína , Linhagem Celular Tumoral
5.
Front Med (Lausanne) ; 9: 999004, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36743670

RESUMO

Colorectal cancer (CRC) is the third most prevalent form of cancer in the United States and results in over 50,000 deaths per year. Treatments for metastatic CRC are limited, and therefore there is an unmet clinical need for more effective therapies. In our prior work, we coupled high-throughput chemical screens with patient-derived models of cancer to identify new potential therapeutic targets for CRC. However, this pipeline is limited by (1) the use of cell lines that do not appropriately recapitulate the tumor microenvironment, and (2) the use of patient-derived xenografts (PDXs), which are time-consuming and costly for validation of drug efficacy. To overcome these limitations, we have turned to patient-derived organoids. Organoids are increasingly being accepted as a "standard" preclinical model that recapitulates tumor microenvironment cross-talk in a rapid, cost-effective platform. In the present work, we employed a library of natural products, intermediates, and drug-like compounds for which full synthesis has been demonstrated. Using this compound library, we performed a high-throughput screen on multiple low-passage cancer cell lines to identify potential treatments. The top candidate, psymberin, was further validated, with a focus on CRC cell lines and organoids. Mechanistic and genomics analyses pinpointed protein translation inhibition as a mechanism of action of psymberin. These findings suggest the potential of psymberin as a novel therapy for the treatment of CRC.

6.
Mol Cancer Ther ; 19(12): 2516-2527, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33158998

RESUMO

Colorectal cancer is the third most common cancer in the United States and responsible for over 50,000 deaths each year. Therapeutic options for advanced colorectal cancer are limited, and there remains an unmet clinical need to identify new treatments for this deadly disease. To address this need, we developed a precision medicine pipeline that integrates high-throughput chemical screens with matched patient-derived cell lines and patient-derived xenografts (PDX) to identify new treatments for colorectal cancer. High-throughput screens of 2,100 compounds were performed across six low-passage, patient-derived colorectal cancer cell lines. These screens identified the CDK inhibitor drug class among the most effective cytotoxic compounds across six colorectal cancer lines. Among this class, combined targeting of CDK1, 2, and 9 was the most effective, with IC50s ranging from 110 nmol/L to 1.2 µmol/L. Knockdown of CDK9 in the presence of a CDK2 inhibitor (CVT-313) showed that CDK9 knockdown acted synergistically with CDK2 inhibition. Mechanistically, dual CDK2/9 inhibition induced significant G2-M arrest and anaphase catastrophe. Combined CDK2/9 inhibition in vivo synergistically reduced PDX tumor growth. Our precision medicine pipeline provides a robust screening and validation platform to identify promising new cancer therapies. Application of this platform to colorectal cancer pinpointed CDK2/9 dual inhibition as a novel combinatorial therapy to treat colorectal cancer.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Medicina de Precisão , Inibidores de Proteínas Quinases/farmacologia , Animais , Biomarcadores Tumorais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/metabolismo , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Descoberta de Drogas/métodos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Sinergismo Farmacológico , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Masculino , Camundongos , Mutação , Medicina de Precisão/métodos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA