Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
2.
Mater Today Bio ; 23: 100850, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38024844

RESUMO

In recent years, there has been a breakthrough in the integration of artificial nanoplatforms with natural biomaterials for the development of more efficient drug delivery systems. The formulation of bioinspired nanosystems, combining the benefits of synthetic nanoparticles with the natural features of biological materials, provides an efficient strategy to improve nanoparticle circulation time, biocompatibility and specificity toward targeted tissues. Among others biological materials, extracellular vesicles (EVs), membranous structures secreted by many types of cells composed by a protein rich lipid bilayer, have shown a great potential as drug delivery systems themselves and in combination with artificial nanoparticles. The reason for such interest relays on their natural properties, such as overcoming several biological barriers or migration towards specific tissues. Here, we propose the use of mesoporous silica nanoparticles (MSNs) as efficient and versatile nanocarriers in combination with tumor derived extracellular vesicles (EVs) for the development of selective drug delivery systems. The hybrid nanosystems demonstrated selective cellular internalization in parent cells, indicating that the EV targeting capabilities were efficiently transferred to MSNs by the developed coating strategy. As a result, EVs-coated MSNs provided an enhanced and selective intracellular accumulation of doxorubicin and a specific cytotoxic activity against targeted cancer cells, revealing these hybrid nanosystems as promising candidates for the development of targeted treatments.

3.
Nanomaterials (Basel) ; 13(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37368258

RESUMO

Vaccines represent one of the most significant advancements in public health since they prevented morbidity and mortality in millions of people every year. Conventionally, vaccine technology focused on either live attenuated or inactivated vaccines. However, the application of nanotechnology to vaccine development revolutionized the field. Nanoparticles emerged in both academia and the pharmaceutical industry as promising vectors to develop future vaccines. Regardless of the striking development of nanoparticles vaccines research and the variety of conceptually and structurally different formulations proposed, only a few of them advanced to clinical investigation and usage in the clinic so far. This review covered some of the most important developments of nanotechnology applied to vaccine technologies in the last few years, focusing on the successful race for the preparation of lipid nanoparticles employed in the successful anti-SARS-CoV-2 vaccines.

4.
Pharmaceutics ; 15(2)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36839771

RESUMO

In recent years, the functionalization of mesoporous silica nanoparticles (MSNs) with different types of responsive pore gatekeepers have shown great potential for the formulation of drug delivery systems (DDS) with minimal premature leakage and site-specific controlled release. New nanotechnological approaches have been developed with the objective of utilizing natural biopolymers as smart materials in drug delivery applications. Natural biopolymers are sensitive to various physicochemical and biological stimuli and are endowed with intrinsic biodegradability, biocompatibility, and low immunogenicity. Their use as biocompatible smart coatings has extensively been investigated in the last few years. This review summarizes the MSNs coating procedures with natural polysaccharides and protein-based biopolymers, focusing on their application as responsive materials to endogenous stimuli. Biopolymer-coated MSNs, which conjugate the nanocarrier features of mesoporous silica with the biocompatibility and controlled delivery provided by natural coatings, have shown promising therapeutic outcomes and the potential to emerge as valuable candidates for the selective treatment of various diseases.

5.
Pharmaceutics ; 15(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36839981

RESUMO

Osteoporosis is the most common type of bone disease. Conventional treatments are based on the use of antiresorptive drugs and/or anabolic agents. However, these treatments have certain limitations, such as a lack of bioavailability or toxicity in non-specific tissues. In this regard, pleiotrophin (PTN) is a protein with potent mitogenic, angiogenic, and chemotactic activity, with implications in tissue repair. On the other hand, mesoporous silica nanoparticles (MSNs) have proven to be an effective inorganic drug-delivery system for biomedical applications. In addition, the surface anchoring of cationic polymers, such as polyethylenimine (PEI), allows for greater cell internalization, increasing treatment efficacy. In order to load and release the PTN to improve its effectiveness, MSNs were successfully internalized in MC3T3-E1 mouse pre-osteoblastic cells and human mesenchymal stem cells. PTN-loaded MSNs significantly increased the viability, mineralization, and gene expression of alkaline phosphatase and Runx2 in comparison with the PTN alone in both cell lines, evidencing its positive effect on osteogenesis and osteoblast differentiation. This proof of concept demonstrates that MSN can take up and release PTN, developing a potent osteogenic and differentiating action in vitro in the absence of an osteogenic differentiation-promoting medium, presenting itself as a possible treatment to improve bone-regeneration and osteoporosis scenarios.

6.
Acta Biomater ; 157: 395-407, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36476646

RESUMO

In the last few years, nanotechnology has revolutionized the potential treatment of different diseases. However, the use of nanoparticles for drug delivery might be limited by their immune clearance, poor biocompatibility and systemic immunotoxicity. Hypotheses for overcoming rejection from the body and increasing their biocompatibility include coating nanoparticles with cell membranes. Additionally, source cell-specific targeting has been reported when coating nanoparticles with tumor cells membranes. Here we show that coating mesoporous silica nanoparticles with membranes derived from preosteoblastic cells could be employed to develop potential treatments of certain bone diseases. These nanoparticles were selected because of their well-established drug delivery features. On the other hand MC3T3-E1 cells were selected because of their systemic migration capabilities towards bone defects. The coating process was here optimized ensuring their drug loading and delivery features. More importantly, our results demonstrated how camouflaged nanocarriers presented cellular selectivity and migration capability towards the preosteoblastic source cells, which might constitute the inspiration for future bone disease treatments. STATEMENT OF SIGNIFICANCE: This work presents a new nanoparticle formulation for drug delivery able to selectively target certain cells. This approach is based on Mesoporous Silica Nanoparticles coated with cell membranes to overcome the potential rejection from the body and increase their biocompatibility prolonging their circulation time. We have employed membranes derived from preosteoblastic cells for the potential treatment of certain bone diseases. Those cells have shown systemic migration capabilities towards bone defects. The coating process was optimized and their appropriate drug loading and releasing abilities were confirmed. The important novelty of this work is that the camouflaged nanocarriers presented cellular selectivity and migration capability towards the preosteoblastic source cells, which might constitute the inspiration for future bone disease treatments.


Assuntos
Doenças Ósseas , Nanopartículas , Humanos , Biomimética , Sistemas de Liberação de Medicamentos , Nanopartículas/uso terapêutico , Dióxido de Silício
7.
Rev. méd. Panamá ; 42(3): 15-19, dic 2022.
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1413295

RESUMO

Introducción: El síndrome de insensibilidad androgénica es un desorden genético y un tipo de trastorno del desarrollo sexual. Es la feminización de los genitales externos evaluados al nacimiento cuando el genotipo es 46, XY. Objetivo: Presentar la clínica, estudios moleculares, ultrasonidos durante el embarazo y del recién nacido con trastorno de diferenciación sexual. Caso Clínico: Femenina de 35 años con tercer embarazo, feto único, con resultado de cribado genético prenatal no invasivo ampliado de aneuploidías cromosómicas y determinación del sexo fetal a la semana 11 de gestación con sexo genético masculino, ultrasonido con ángulo del tubérculo genital de menos de 30° indicativo de sexo fenotípico femenino y ecografía postnatal con sexo gonadal masculino. Panel molecular genético con una variante patogénica para el Gen AR, en hemicigosis, asociado a Síndrome de Insensibilidad Androgénica. Conclusión: La discordancia sexual fenotipo-genotipo puede indicar una condición genética, cromosómica o bioquímica subyacente. El manejo conjunto interdisciplinario y el consejo genético permite el diagnóstico molecular neonatal temprano de la condición. (provisto por Infomedic International)


Introduction: Androgen insensitivity syndrome is a genetic disorder and a type of sexual development disorder. It is characterized by the evident feminization of the external genitalia at birth in an individual with the 46, XY genotype. Aim: To present the clinic, molecular studies, obstetric ultrasonography of the first trimester and ultrasound of the newborn with sexual differentiation disorder. Clinic case: 35-year-old female with third pregnancy, singleton fetus, with extended non-invasive prenatal genetic screening for chromosomal aneuploidies and fetal sex determination at week 11 of gestation with male genetic sex, ultrasound with genital tubercle angle less than 30° indicative of female phenotypic sex and postnatal ultrasound with male gonadal sex. Genetic molecular panel with a pathogenic variant for the AR gene, in hemi zygosis. Conclusion: Early detection of phenotype-genotype sexual discordance is important as it may indicate an underlying genetic, chromosomal, or biochemical condition, allowing timely critical counseling and postnatal treatment. (provided by Infomedic International)

8.
Front Immunol ; 13: 1023255, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439169

RESUMO

SARS-CoV-2 vaccines currently in use have contributed to controlling the COVID-19 pandemic. Notwithstanding, the high mutation rate, fundamentally in the spike glycoprotein (S), is causing the emergence of new variants. Solely utilizing this antigen is a drawback that may reduce the efficacy of these vaccines. Herein we present a DNA vaccine candidate that contains the genes encoding the S and the nucleocapsid (N) proteins implemented into the non-replicative mammalian expression plasmid vector, pPAL. This plasmid lacks antibiotic resistance genes and contains an alternative selectable marker for production. The S gene sequence was modified to avoid furin cleavage (Sfs). Potent humoral and cellular immune responses were observed in C57BL/6J mice vaccinated with pPAL-Sfs + pPAL-N following a prime/boost regimen by the intramuscular route applying in vivo electroporation. The immunogen fully protected K18-hACE2 mice against a lethal dose (105 PFU) of SARS-CoV-2. Viral replication was completely controlled in the lungs, brain, and heart of vaccinated mice. Therefore, pPAL-Sfs + pPAL-N is a promising DNA vaccine candidate for protection from COVID-19.


Assuntos
COVID-19 , Vacinas de DNA , Vacinas Virais , Camundongos , Animais , Humanos , SARS-CoV-2 , Vacinas contra COVID-19 , Pandemias , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , COVID-19/prevenção & controle , Antibacterianos , Mamíferos
9.
Pharmaceutics ; 14(7)2022 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-35890378

RESUMO

Nanomedicines have revolutionized the treatment of certain types of cancer, as is the case of doxil, liposomal formulation with doxorubicin encapsulated, in the treatment of certain types of ovarian cancer, AIDS-related Kaposi sarcoma, and multiple myeloma. These nanomedicines can improve the performance of conventional chemotherapeutic treatments, with fewer side effects and better efficiency against cancer. Although liposomes have been used in some formulations, different nanocarriers with better features in terms of stability and adsorption capabilities are being explored. Among the available nanoparticles in the field, mesoporous silica nanoparticles (MSNP) have attracted great attention as drug delivery platforms for the treatment of different diseases. Here, a novel formulation based on MSNP loaded with a potent antitumor prodrug that works in vitro as well as in a clinically evaluated liposomal formulation has been developed. This novel formulation shows excellent prodrug encapsulation efficiency and effective release of the anticancer drug only under certain stimuli typical of tumor environments. This behavior is of capital importance for translating this nanocarrier to the clinic in the near future.

10.
Chem Soc Rev ; 51(13): 5365-5451, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35642539

RESUMO

The present review details a chronological description of the events that took place during the development of mesoporous materials, their different synthetic routes and their use as drug delivery systems. The outstanding textural properties of these materials quickly inspired their translation to the nanoscale dimension leading to mesoporous silica nanoparticles (MSNs). The different aspects of introducing pharmaceutical agents into the pores of these nanocarriers, together with their possible biodistribution and clearance routes, would be described here. The development of smart nanocarriers that are able to release a high local concentration of the therapeutic cargo on-demand after the application of certain stimuli would be reviewed here, together with their ability to deliver the therapeutic cargo to precise locations in the body. The huge progress in the design and development of MSNs for biomedical applications, including the potential treatment of different diseases, during the last 20 years will be collated here, together with the required work that still needs to be done to achieve the clinical translation of these materials. This review was conceived to stand out from past reports since it aims to tell the story of the development of mesoporous materials and their use as drug delivery systems by some of the story makers, who could be considered to be among the pioneers in this area.


Assuntos
Nanopartículas , Dióxido de Silício , Portadores de Fármacos , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/uso terapêutico , Porosidade , Distribuição Tecidual
11.
Food Chem X ; 13: 100247, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35499029

RESUMO

The objective of this work was to obtain hydrolysates and peptide fractions from pork (PSC) and chicken (CSC) skin collagen extracts and to evaluate their ability as pancreatic lipase inhibitors. Collagen extracts were hydrolyzed with collagenase or a protease from Bacillus licheniformis (MPRO NX®) at 6, 12, and 24 h. After 24 h incubation, the highest degree of hydrolysis of PSC (p < 0.05) was obtained with collagenase (72.58%), while in CSC was obtained with MPRO NX® (64.45%). Hydrolysates obtained at 24 h had the highest inhibitory activity of lipase (p < 0.05). CSC/collagenase hydrolysates (10 mg/mL) presented the highest inhibitory activity (75.53%) (p < 0.05). Ultrafiltrated fractions >5 kDa from CSC/collagenase and PSC/MPRO NX® hydrolysates were the most bioactive fractions (IC50: 4.33 mg/mL). The highest were obtained by CSC peptides (IC50s: 6.30 and 6.08 mg/mL). These results may be considered as a novel approach to use collagen hydrolysates, or their peptide fractions, as promising natural inhibitors of pancreatic lipase.

12.
Pharmaceutics ; 13(12)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34959461

RESUMO

Twenty years ago, a group of bold scientists led by Prof Vallet-Regí suggested for the first time the use of mesoporous materials as potential drug delivery systems. Without knowing it; these pioneers unleashed the beast of creativity around the world because that original idea has been the inspiration of hundreds of scientific groups for the design of many versatile delivery systems based on mesoporous materials. Because the dream is not the destination, it is the journey, the present review aims to summarise the chain of events that catapulted a small and young research team from the grassroots of academia to the elite of the Biomedical Engineering field.

13.
Adv Sci (Weinh) ; 8(16): e2101107, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34096198

RESUMO

Nanotechnology changed the concept of treatment for a variety of diseases, producing a huge impact regarding drug and gene delivery. Among the different targeted diseases, osteoporosis has devastating clinical and economic consequences. Since current osteoporosis treatments present several side effects, new treatment approaches are needed. Recently, the application of small interfering RNA (siRNA) has become a promising alternative. Wnt/ß-catenin signaling pathway controls bone development and formation. This pathway is negatively regulated by sclerostin, which knock-down through siRNA application would potentially promote bone formation. However, the major bottleneck for siRNA-based treatments is the necessity of a delivery vector, bringing nanotechnology as a potential solution. Among the available nanocarriers, mesoporous silica nanoparticles (MSNs) have attracted great attention for intracellular delivery of siRNAs. The mesoporous structure of MSNs permits the delivery of siRNAs together with another biomolecule, achieving a combination therapy. Here, the effectiveness of a new potential osteoporosis treatment based on MSNs is evaluated. The proposed system is effective in delivering SOST siRNA and osteostatin through systemic injection to bone tissue. The nanoparticle administration produced an increase expression of osteogenic related genes improving the bone microarchitecture. The treated osteoporotic mice recovered values of a healthy situation approaching to osteoporosis remission.


Assuntos
Nanopartículas/uso terapêutico , Osteogênese , Osteoporose/terapia , RNA Interferente Pequeno/administração & dosagem , Dióxido de Silício/administração & dosagem , Animais , Modelos Animais de Doenças , Camundongos , Porosidade , Indução de Remissão/métodos
14.
Molecules ; 26(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917637

RESUMO

The majority of snacks expanded by extrusion (SEE) are made with vegetable sources, to improve their nutritional content; it has been proposed to incorporate squid (Dosidicus gigas), due to its high protein content, low price and high availability. However, the interaction of proteins of animal origin with starch during extrusion causes negative effects on the sensory properties of SEE, so it is necessary to know the type of protein-carbohydrate interactions and their effect on these properties. The objective of this research was to study the interaction of proteins and carbohydrates of SEE elaborated with squid mantle, potato and corn. The nutritional composition and protein digestibility were evaluated, Fourier transform infrared (FTIR) and Differential Scanning Calorimetry (DSC) were used to study the formation of protein-starch complexes and the possible regions responsible for their interactions. The SEE had a high protein content (40-85%) and biological value (>93%). The melting temperature (Tm) was found between 145 and 225 °C; the Tm values in extruded samples are directly proportional to the squid content. The extrusion process reduced the amine groups I and II responsible for the protein-protein interaction and increased the O-glucosidic bonds, so these bonds could be responsible for the protein-carbohydrate interactions.


Assuntos
Varredura Diferencial de Calorimetria , Decapodiformes/química , Proteínas/química , Lanches , Solanum tuberosum/química , Amido/química , Animais , Espectroscopia de Infravermelho com Transformada de Fourier
15.
ACS Appl Mater Interfaces ; 13(8): 9656-9666, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33596035

RESUMO

The several biological barriers that nanoparticles might encounter when administered to a patient constitute the major bottleneck of nanoparticle-mediated tumor drug delivery, preventing their successful translation into the clinic and reducing their therapeutic profile. In this work, mesoporous silica nanoparticles have been employed as a platform to engineer a versatile nanomedicine able to address such barriers, achieving (a) excessive premature drug release control, (b) accumulation in tumor tissues, (c) selective internalization in tumoral cells, and (d) endosomal escape. The nanoparticles have been decorated with a self-immolative redox-responsive linker to prevent excessive premature release, to which a versatile and polyvalent peptide that is able to recognize tumoral cells and induce the delivery of the nanoparticles to the cytoplasm via endosomal escape has been grafted. The excellent biological performance of the carrier has been demonstrated using 2D and 3D in vitro cell cultures and a tumor-bearing chicken embryo model, demonstrating in all cases high biocompatibility and cytotoxic effect, efficient endosomal escape and tumor penetration, and accumulation in tumors grown on the chorioallantoic membrane of chicken embryos.


Assuntos
Portadores de Fármacos/química , Endossomos/metabolismo , Nanopartículas/química , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Galinhas , Doxorrubicina/química , Doxorrubicina/uso terapêutico , Portadores de Fármacos/metabolismo , Liberação Controlada de Fármacos , Embrião não Mamífero/efeitos dos fármacos , Humanos , Nanopartículas/metabolismo , Neoplasias/tratamento farmacológico , Porosidade , Dióxido de Silício/química , Dióxido de Silício/metabolismo
16.
Probiotics Antimicrob Proteins ; 13(4): 1033-1043, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33512646

RESUMO

Studies have shown that the intracellular content of probiotic (postbiotics) has antioxidant properties, which can improve the antioxidant status in vivo. However, its absorption and mechanisms underlying the protective effects are still unknown. The antioxidant capacity of Lacticaseibacillus casei CRL431 (IC-431) postbiotics was determined after an in vitro simulated digestive process. Permeability of antioxidant constituents of IC-431 was determined by an ex vivo everted duodenum assay. Aflatoxin B1-induced oxidative stress rat models were established and treated with IC-431; biomarkers of hepatic mitochondrial function and H2O2 levels, oxidative stress, and oxidative stress index (OSi) were examined. The antioxidant capacity of IC-431 (477 ± 45.25 µmol Trolox Equivalent/L) was reduced by exposure to the simulated digestive process. No difference (p > 0.05) was found among digested and the permeate fraction of IC-431. A protective effect was observed by significantly lower OSi and higher liver glutathione peroxidase and catalase activities. Lower H2O2 production, a higher degree of mitochondrial uncoupling, and lower mitochondrial respiration coefficient were also observed (p < 0.05). These results suggest that IC-431 antioxidant components permeate intestinal barriers to enter the bloodstream and regulate antioxidant status during AFB1-induced oxidative stress by reducing hepatic mitochondrial dysfunction, thus enhancing antioxidant enzyme response.


Assuntos
Aflatoxina B1 , Lacticaseibacillus casei , Mitocôndrias , Estresse Oxidativo , Probióticos , Aflatoxina B1/toxicidade , Animais , Antioxidantes , Peróxido de Hidrogênio , Mitocôndrias/fisiologia , Ratos
17.
Appl Biochem Biotechnol ; 193(2): 389-404, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33009584

RESUMO

Proteolytic enzymes are widely distributed in nature, playing essential roles in important biological functions. Recently, the use of plant proteases at the industrial level has mainly increased in the food industry (e.g., cheesemaking, meat tenderizing, and protein hydrolysate production). Current technological and scientific advances in the detection and characterization of proteolytic enzymes have encouraged the search for new natural sources. Thus, this work aimed to explore the milk-clotting and proteolytic properties of different tissues of Vallesia glabra. Aqueous extracts from the leaves, fruits, and seeds of V. glabra presented different protein profiles, proteolytic activity, and milk-clotting activity. The milk-clotting activity increased with temperature (30-65 °C), but this activity was higher in leaf (0.20 MCU/mL) compared with that in fruit and seed extracts (0.12 and 0.11 MCU/mL, respectively) at 50 °C. Proteolytic activity in the extracts assayed at different pH (2.5-12.0) suggested the presence of different types of active proteases, with maximum activity at acidic conditions (4.0-4.5). Inhibitory studies indicated that major activity in V. glabra extracts is related to cysteine proteases; however, the presence of serine, aspartic, and metalloproteases was also evident. The hydrolytic profile of caseins indicated that V. glabra leaves could be used as a rennet substitute in cheesemaking, representing a new and promising source of proteolytic enzymes.


Assuntos
Apocynaceae/enzimologia , Leite/química , Peptídeo Hidrolases/química , Folhas de Planta/enzimologia , Proteínas de Plantas/química , Proteólise , Sementes/enzimologia , Animais , Concentração de Íons de Hidrogênio
18.
Biology (Basel) ; 9(11)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33218092

RESUMO

Nanoparticles designed for diagnosing and treating different diseases have impacted the scientific research in biomedicine, and are expected to revolutionize the clinic in the near future through a new area called nanomedicine. In the last few years, a new approach in this field has emerged: the use of cell membranes for coating nanoparticles in an attempt to mimic the ability of cells to interface and interact with physiological environments. Although such functions have been replicated through synthetic techniques, many research groups are now employing naturally derived cell membranes to coat different types of nanoparticles in an attempt to improve their performance for a wide range of applications. This review summarizes the literature on nanoparticles coated with cell membranes and, more importantly, aims at inspiring and encouraging new developments to this technology in the biomedical area.

19.
Artigo em Inglês | MEDLINE | ID: mdl-32509740

RESUMO

Injectable therapeutic formulations locally releasing their cargo with tunable kinetics in response to external biochemical/physical cues are gaining interest in the scientific community, with the aim to overcome the cons of traditional administration routes. In this work, we proposed an alternative solution to this challenging goal by combining thermo-sensitive hydrogels based on custom-made amphiphilic poly(ether urethane)s (PEUs) and mesoporous silica nanoparticles coated with a self-immolative polymer sensitive to acid pH (MSN-CS-SIP). By exploiting PEU chemical versatility, Boc-protected amino groups were introduced as PEU building block (PEU-Boc), which were then subjected to a deprotection reaction to expose pendant primary amines along the polymer backbone (PEU-NH2, 3E18 -NH2/gPEU-NH2) with the aim to accelerate system response to external acid pH environment. Then, thermo-sensitive hydrogels were designed (15% w/v) showing fast gelation in physiological conditions (approximately 5 min), while no significant changes in gelation temperature and kinetics were induced by the Boc-deprotection. Conversely, free amines in PEU-NH2 effectively enhanced and accelerated acid pH transfer (pH 5) through hydrogel thickness (PEU-Boc and PEU-NH2 gels covered approximately 42 and 52% of the pH delta between their initial pH and the pH of the surrounding buffer within 30 min incubation, respectively). MSN-CS-SIP carrying a fluorescent cargo as model drug (MSN-CS-SIP-Ru) were then encapsulated within the hydrogels with no significant effects on their thermo-sensitivity. Injectability and in situ gelation at 37°C were demonstrated ex vivo through sub-cutaneous injection in rodents. Moreover, MSN-CS-SIP-Ru-loaded gels turned out to be detectable through the skin by IVIS imaging. Cargo acid pH-triggered delivery from PEU-Boc and PEU-NH2 gels was finally demonstrated through drug release tests in neutral and acid pH environments (in acid pH environment approximately 2-fold higher cargo release). Additionally, acid-triggered payload release from PEU-NH2 gels was significantly higher compared to PEU-Boc systems at 3 and 4 days incubation. The herein designed hybrid injectable formulations could thus represent a significant step forward in the development of multi-stimuli sensitive drug carriers. Indeed, being able to adapt their behavior in response to biochemical cues from the surrounding physio-pathological environment, these formulations can effectively trigger the release of their payload according to therapeutic needs.

20.
ACS Appl Mater Interfaces ; 12(13): 14946-14957, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32141284

RESUMO

In this work, two types of mesoporous carbon particles with different morphology, size, and pore structure have been functionalized with a self-immolative polymer sensitive to changes in pH and tested as drug nanocarriers. It is shown that their textural properties allow significantly higher loading capacity compared to typical mesoporous silica nanoparticles. In vial release experiments of a model Ru dye at pH 7.4 and 5 confirm the pH-responsiveness of the hybrid systems, showing that only small amounts of the cargo are released at physiological pH, whereas at slightly acidic pH (e.g., that of lysosomes), self-immolation takes place and a significant amount of the cargo is released. Cytotoxicity studies using human osteosarcoma cells show that the hybrid nanocarriers are not cytotoxic by themselves but induce significant cell growth inhibition when loaded with a chemotherapeutic drug such as doxorubicin. In preparation of an in vivo application, in vial responsiveness of the hybrid system to short-term pH-triggering is confirmed. The consecutive in vivo study shows no substantial cargo release over a period of 96 h under physiological pH conditions. Short-term exposure to acidic pH releases an experimental fluorescent cargo during and continuously after the triggering period over 72 h.


Assuntos
Carbono/química , Portadores de Fármacos/química , Nanopartículas/química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Carbocianinas/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/toxicidade , Polímeros/química , Porosidade , Rutênio/química , Rutênio/metabolismo , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA