Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Tissue Res ; 396(1): 95-102, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38347202

RESUMO

The odor space of aquatic organisms is by necessity quite different from that of air-breathing animals. The recognized odor classes in teleost fish include amino acids, bile acids, reproductive hormones, nucleotides, and a limited number of polyamines. Conversely, a significant portion of the fish olfactory receptor repertoire is composed of trace amine-associated receptors, generally assumed to be responsible for detecting amines. Zebrafish possess over one hundred of these receptors, but the responses of olfactory sensory neurons to amines have not been known so far. Here we examined odor responses of zebrafish olfactory epithelial explants at the cellular level, employing calcium imaging. We report that amines elicit strong responses in olfactory sensory neurons, with a time course characteristically different from that of ATP-responsive (basal) cells. A quantitative analysis of the laminar height distribution shows amine-responsive cells undistinguishable from ciliated neurons positive for olfactory marker protein. This distribution is significantly different from those measured for microvillous neurons positive for transient receptor potential channel 2 and basal cells positive for proliferating cell nuclear antigen. Our results suggest amines as an important odor class for teleost fish.


Assuntos
Neurônios Receptores Olfatórios , Receptores Odorantes , Animais , Peixe-Zebra/metabolismo , Cálcio/metabolismo , Aminas/metabolismo , Odorantes , Mucosa Olfatória/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Receptores Odorantes/metabolismo
2.
HNO ; 62(12): 846-52, 2014 Dec.
Artigo em Alemão | MEDLINE | ID: mdl-25315675

RESUMO

The origins of the sense of smell lie in the perception of environmental molecules and go back to unicellular organisms such as bacteria. Odors transmit a multitude of information about the chemical composition of our environment. The sense of smell helps people and animals with orientation in space, warns of potential threats, influences the choice of sexual partners, regulates food intake and influences feelings and social behavior in general. The perception of odors begins in sensory neurons residing in the olfactory epithelium that express G protein-coupled receptors, the so-called olfactory receptors. The binding of odor molecules to olfactory receptors initiates a signal transduction cascade that converts olfactory stimuli into electrical signals. These signals are then transmitted to the olfactory bulb, the first relay center in the olfactory pathway, via the axons of the sensory neurons. The olfactory information is processed in the bulb and then transferred to higher olfactory centers via axons of mitral cells, the bulbar projection neurons. This review describes the mechanisms involved in peripheral detection of odorants, outlines the further processing of olfactory information in higher olfactory centers and finally gives an overview of the overall significance of the ability to smell.


Assuntos
Modelos Neurológicos , Odorantes , Bulbo Olfatório/fisiologia , Condutos Olfatórios/fisiologia , Percepção Olfatória/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Olfato/fisiologia , Animais , Humanos
3.
Eur J Neurosci ; 29(12): 2315-26, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19490026

RESUMO

The main olfactory system of larval Xenopus laevis is made up of at least two subsystems consisting of subsets of olfactory receptor neurons (ORNs) with different transduction mechanisms. One ORN subset lacks the canonical cAMP transduction pathway and responds to amino acid odorants. The second subset has the cAMP transduction pathway but as yet suitable odorants are unknown. Here we report the identification of amines as proper olfactory stimuli for larval X. laevis using functional Ca(2+) imaging and slice preparations of the olfactory system. The response profiles of individual ORNs to a number of amines were extremely complex and mostly highly specific. The great majority of amine-sensitive ORNs responded also to forskolin, an activator of the olfactory cAMP transduction pathway. Most amine-induced responses could be attenuated by the cyclic nucleotide-gated channel inhibitor LY83583. This confirms that most amine-responsive olfactory receptors (ORs) are coupled to the cAMP-dependent transduction pathway. Furthermore, we show that trace amine-associated receptors (TAARs), which have been shown to act as specific ORs for amines in mammals, are expressed in the olfactory organ of X. laevis. The TAARs expressed in Xenopus cannot, however, explain the complex responses of individual ORNs to amines because there are too few of them. This indicates that, in addition to TAARs, there must be other receptor families involved in the detection of amines.


Assuntos
Aminas/farmacologia , Odorantes , Neurônios Receptores Olfatórios/fisiologia , Transdução de Sinais/fisiologia , Olfato/fisiologia , Aminas/química , Aminoquinolinas/farmacologia , Animais , Colforsina/farmacologia , AMP Cíclico/metabolismo , Inibidores Enzimáticos/farmacologia , Neurônios Receptores Olfatórios/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Transdução de Sinais/efeitos dos fármacos , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA