Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Pathol Inform ; 14: 100318, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37811334

RESUMO

Whole slide imaging is revolutionizing the field of pathology and is currently being used for clinical, educational, and research initiatives by an increasing number of institutions. Pathology departments have distinct needs for digital pathology systems, yet the cost of digital workflows is cited as a major barrier for widespread adoption by many organizations. Memorial Sloan Kettering Cancer Center (MSK) is an early adopter of whole slide imaging with incremental investments in resources that started more than 15 years ago. This experience and the large-scale scan operations led to the identification of required framework components of digital pathology operations. The cost of these components for the 2021 digital pathology operations at MSK were studied and calculated to enable an understanding of the operation and benchmark the accompanying costs. This paper describes the unique infrastructure cost and the costs associated with the digital pathology clinical operation use cases in a large, tertiary cancer center. These calculations can serve as a blueprint for other institutions to provide the necessary concepts and offer insights towards the financial requirements for digital pathology adoption by other institutions.

2.
Lab Invest ; 103(11): 100246, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37659445

RESUMO

Digital pathology workflows can improve pathology operations by allowing reliable and fast retrieval of digital images, digitally reviewing pathology slides, enabling remote work and telepathology, use of computer-aided tools, and sharing of digital images for research and educational purposes. The need for quality systems is a prerequisite for successful clinical-grade digital pathology adoption and patient safety. In this article, we describe the development of a structured digital pathology laboratory quality management system (QMS) for clinical digital pathology operations at Memorial Sloan Kettering Cancer Center (MSK). This digital pathology-specific QMS development stemmed from the gaps that were identified when MSK integrated digital pathology into its clinical practice. The digital scan team in conjunction with the Department of Pathology and Laboratory Medicine quality team developed a QMS tailored to the scanning operation to support departmental and institutional needs. As a first step, systemic mapping of the digital pathology operations identified the prescan, scan, and postscan processes; instrumentation; and staffing involved in the digital pathology operation. Next, gaps identified in quality control and quality assurance measures led to the development of standard operating procedures and training material for the different roles and workflows in the process. All digital pathology-related documents were subject to regulatory review and approval by departmental leadership. The quality essentials were developed into an extensive Digital Pathology Quality Essentials framework to specifically address the needs of the growing clinical use of digital pathology technologies. Using the unique digital experience gained at MSK, we present our recommendations for QMS for large-scale digital pathology operations in clinical settings.


Assuntos
Neoplasias , Patologia Clínica , Telepatologia , Humanos , Laboratórios , Neoplasias/diagnóstico , Neoplasias/cirurgia , Patologia Clínica/métodos , Telepatologia/métodos , Gestão da Qualidade Total
3.
J Am Med Inform Assoc ; 28(9): 1874-1884, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260720

RESUMO

OBJECTIVE: Broad adoption of digital pathology (DP) is still lacking, and examples for DP connecting diagnostic, research, and educational use cases are missing. We blueprint a holistic DP solution at a large academic medical center ubiquitously integrated into clinical workflows; researchapplications including molecular, genetic, and tissue databases; and educational processes. MATERIALS AND METHODS: We built a vendor-agnostic, integrated viewer for reviewing, annotating, sharing, and quality assurance of digital slides in a clinical or research context. It is the first homegrown viewer cleared by New York State provisional approval in 2020 for primary diagnosis and remote sign-out during the COVID-19 (coronavirus disease 2019) pandemic. We further introduce an interconnected Honest Broker for BioInformatics Technology (HoBBIT) to systematically compile and share large-scale DP research datasets including anonymized images, redacted pathology reports, and clinical data of patients with consent. RESULTS: The solution has been operationally used over 3 years by 926 pathologists and researchers evaluating 288 903 digital slides. A total of 51% of these were reviewed within 1 month after scanning. Seamless integration of the viewer into 4 hospital systems clearly increases the adoption of DP. HoBBIT directly impacts the translation of knowledge in pathology into effective new health measures, including artificial intelligence-driven detection models for prostate cancer, basal cell carcinoma, and breast cancer metastases, developed and validated on thousands of cases. CONCLUSIONS: We highlight major challenges and lessons learned when going digital to provide orientation for other pathologists. Building interconnected solutions will not only increase adoption of DP, but also facilitate next-generation computational pathology at scale for enhanced cancer research.


Assuntos
COVID-19 , Informática Médica/tendências , Neoplasias , Patologia Clínica , Centros Médicos Acadêmicos , Inteligência Artificial , COVID-19/diagnóstico , Humanos , Masculino , Neoplasias/diagnóstico , Pandemias , Patologia Clínica/tendências
4.
Acad Pathol ; 8: 23742895211010276, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35155745

RESUMO

Implementation of an infrastructure to support digital pathology began in 2006 at Memorial Sloan Kettering Cancer Center. The public health emergency and COVID-19 pandemic regulations in New York City required a novel workflow to sustain existing operations. While regulatory enforcement discretions offered faculty workspace flexibility, a substantial portion of laboratory and digital pathology workflows require on-site presence of staff. Maintaining social distancing and offering staggered work schedules. Due to a decrease in patients seeking health care at the onset of the pandemic, a temporary decrease in patient specimens was observed. Hospital and travel regulations impacted onsite vendor technical support. Digital glass slide scanning activities onsite proceeded without interruption throughout the pandemic, with challenges including staff who required quarantine due to virus exposure, unrelated illness, family support, or lack of public transportation. During the public health emergency, we validated digital pathology systems for a remote pathology operation. Since March 2020, the departmental digital pathology staff were able to maintain scanning volumes of over 100 000 slides per month. The digital scanning team reprioritized archival slide scanning and participated in a remote sign-out validation and successful submission of New York State approval for a laboratory developed test. Digital pathology offers a health care delivery model where pathologists can perform their sign out duties at remote location and prevent disruptions to critical pathology services for patients seeking care at our institution during emergencies. Development of standard operating procedures to support digital workflows will maintain turnaround times and enable clinical operations during emergency or otherwise unanticipated events.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA