Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Gene Expr Patterns ; 35: 119091, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31770608

RESUMO

The forkhead-box transcription factors of O subfamily (FOXO) play important roles in regulation of various biological functions. We cloned foxo1, foxo3, foxo4, and foxo6 from Xenopus tropicalis (hereafter X. tropicalis), and examined their expression in embryos and adult tissues. Maternal transcripts of foxo1 and foxo3 genes are detected within the animal half of the early embryo, their zygotic transcripts show distinct patterns. At late tailbud stages, foxo1 expression is observed mainly in eye, brain, branchial arches, and pronephros. In addition to eye, brain, branchial arches and pronephros, foxo3 expression is also evident in heart and somites. Foxo4 expression was not detected in oocytes. At late tailbud stages, foxo4 is mainly expressed in eye, brain, branchial arches and otic vesicle. Foxo6 expression was not detectable until stage 36, with a specific expression in nasal pits. Obvious expression of foxo1, foxo3 and foxo4, but not foxo6, is detected by RT-PCR both in oocytes and in embryos at examined stages. The expression of foxo1, foxo3 and foxo4 is observed in all tested adult tissues including heart, muscle, liver, lung, stomach and small intestine, while foxo6 is only detectable in stomach and small intestine. The differential expression pattern of foxo genes suggests that they exert distinct functions during embryonic development and in various organs of X. tropicalis.


Assuntos
Proteínas de Anfíbios/genética , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Anfíbios/metabolismo , Animais , Encéfalo/embriologia , Encéfalo/metabolismo , Brônquios/embriologia , Brônquios/metabolismo , Olho/embriologia , Olho/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Coração/embriologia , Rim/embriologia , Rim/metabolismo , Mesoderma/embriologia , Mesoderma/metabolismo , Miocárdio/metabolismo , Xenopus
2.
Life Sci ; 216: 129-139, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30414426

RESUMO

AIMS: This study aims to investigate the pathophysiological role and mechanism of pigment epithelium-derived factor (PEDF) deletion in ovarian damage. METHODS: Female PEDF-knockout mice and their wild-type littermates were used in this study. Relevant tests were performed at 8-10 weeks or 32 weeks of age. KEY FINDINGS: Compared to the wild-type mice, the PEDF-knockout mice showed diminished ovarian reserve (DOR), worse ovum quality after injection to induce controlled ovarian stimulation, increased serum follicle stimulating hormone (FSH) level and an follicle stimulating hormone/luteinizing hormone (FSH/LH) ratio. Moreover, severe ovarian oxidative damage was found in ovaries of PEDF-knockout mice that mainly manifested as an accumulation of reactive oxygen species (ROS), NF­E2-related factor 2 (Nrf2) pathway activation, significantly upregulated expression of ROS-generating genes. Correspondingly, the PEDF-knockout mice exhibited lipid metabolism disorder and insulin resistance, which mainly manifested as obesity, abdominal fat accumulation, adipocyte enlargement, severe ectopic fat deposition, dyslipidemia, changes in adipokine levels, hyperglycemia, hyperinsulinemia, impaired glucose tolerance, impaired insulin tolerance and significantly declined protein kinase B (Akt) phosphorylation levels. SIGNIFICANCE: Loss of PEDF leads to ovarian oxidative damage accompanied by DOR in mice, this is related to PEDF deficiency induced severe insulin resistance and lipid metabolism disorder. Therefore, PEDF may be a potential target for the treatment of diseases related to ovarian oxidative damage.


Assuntos
Proteínas do Olho/genética , Fatores de Crescimento Neural/genética , Reserva Ovariana/fisiologia , Ovário/fisiopatologia , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Serpinas/genética , Gordura Abdominal/metabolismo , Animais , Proteínas do Olho/metabolismo , Feminino , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Crescimento Neural/metabolismo , Obesidade/patologia , Reserva Ovariana/genética , Estresse Oxidativo/genética , Serpinas/metabolismo , Regulação para Cima
3.
FASEB J ; : fj201800093, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29897811

RESUMO

The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 system has emerged as a powerful tool for knock-in of DNA fragments via donor plasmid and homology-independent DNA repair mechanism; however, conventional integration includes unnecessary plasmid backbone and may result in the unfaithful expression of the modified endogenous genes. Here, we report an efficient and precise CRISPR/Cas9-mediated integration strategy using a donor plasmid that harbors 2 of the same cleavage sites that flank the cassette at both sides. After the delivery of donor plasmid, together with Cas9 mRNA and guide RNA, into cells or fertilized eggs, concurrent cleavages at both sides of the exogenous cassette and the desired chromosomal site result in precise targeted integration without plasmid backbone. We successfully used this approach to precisely integrate the EGFP reporter gene into the myh6 locus or the GAPDH locus in Xenopus tropicalis or human cells, respectively. Furthermore, we demonstrate that replacing conventional terminators with the endogenous 3UTR of target genes in the cassette greatly improves the expression of reporter gene after integration. Our efficient and precise method will be useful for a variety of targeted genome modifications, not only in X. tropicalis, but also in mammalian cells, and can be readily adapted to many other organisms.-Mao, C.-Z., Zheng, L., Zhou, Y.-M., Wu, H.-Y., Xia, J.-B., Liang, C.-Q., Guo, X.-F., Peng, W.-T., Zhao, H., Cai, W.-B., Kim, S.-K., Park, K.-S., Cai, D.-Q., Qi, X.-F. CRISPR/Cas9-mediated efficient and precise targeted integration of donor DNA harboring double cleavage sites in Xenopus tropicalis.

4.
Sci Rep ; 7(1): 13273, 2017 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-29038511

RESUMO

Vascular endothelial growth factor (VEGF) plays important roles in improvement of cardiac function following myocardial infarction (MI). However, the lack of a steerable delivery system of VEGF targeting the infarcted myocardium reduces the therapeutic efficacy and safety. Here, we constructed a series of lentiviral vector systems which could express a fusion protein consisted of a collagen-binding domain (CBD) and hVEGF (CBDhVEGF), under the control of 5HRE-hCMVmp (5HRE), the hypoxia-inducible promoter consists of five copies of the hypoxia-responsive element (HRE) and a human cytomegalovirus minimal promoter (hCMVmp). We demonstrated that 5HRE has the comparable ability to strongly drive CBDhVEGF under hypoxic condition as the ubiquitous CMV promoter, but it can hardly drive target gene under normoxic condition. 5HRE-drived CBDhVEGF specifically bound to type I collagen and significantly promoted the viability of HUVEC cells. Moreover, after injection of lentivirus into heart of mouse with MI, CBDhVEGF was mainly retained in infarcted myocardium where containing rich collagen and significantly improved angiogenesis and cardiac function when compared with hVEGF. Moreover, CBDhVEGF mediated by lentivirus has little leakage from infarcted zone into blood than hVEGF. Taken together, our results indicate that 5HRE-CBDhVEGF lentiviral vector system could improve cardiac function in the collagen-targeting and hypoxia-inducible manners.


Assuntos
Colágeno/genética , Técnicas de Transferência de Genes , Hipóxia/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Fatores de Crescimento do Endotélio Vascular/genética , Animais , Linhagem Celular , Colágeno/metabolismo , Modelos Animais de Doenças , Ecocardiografia , Expressão Gênica , Terapia Genética , Vetores Genéticos/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Hipóxia/metabolismo , Lentivirus/genética , Camundongos , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/terapia , Regiões Promotoras Genéticas , Elementos de Resposta , Fatores de Crescimento do Endotélio Vascular/metabolismo
5.
Gene Expr Patterns ; 23-24: 1-6, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28034797

RESUMO

Recent studies suggest that ribosome-binding protein 1 (RRBP1) is involved in multiple diseases such as tumorigenesis and cardiomyopathies. However, its function during embryonic development remains largely unknown. We searched Xenopus laevis database with human RRBP1 protein sequence and identified two cDNA sequences encoding Xenopus orthologs of RRBP1 including rrbp1a (NM_001089623) and rrbp1b (NM_001092468). Both genes were firstly detected at blastula stage 8 with weak signals in animal hemisphere by whole mount in situ hybridization. Evident expression of rrbp1 was mainly detected in cement gland and notochord at neurula and tailbud stages. Heart expression of rrbp1 was detected at stage 36. RT-PCR results indicated that very weak expression of rrbp1a was firstly detected in oocytes, followed by increasing expression until stage 39. Differently, very weak expression of rrbp1b was firstly observed at stage 2, and then maintained at a lower level to stage 17 followed by an intense expression from stages 19-39. Moreover, both expression profiles were also different in adult tissues. This study reports Xenopus rrbp1 expression during early embryonic development and in adult tissues. Our study will facilitate the functional analysis of Rrbp1 family during embryonic development.


Assuntos
Proteínas de Transporte/genética , Proteínas de Xenopus/genética , Xenopus laevis/embriologia , Xenopus laevis/metabolismo , Animais , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Miocárdio/metabolismo , Transcriptoma , Proteínas de Xenopus/química , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética
6.
Exp Mol Pathol ; 100(2): 257-65, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26835911

RESUMO

CXCL10 is a chemokine with potent chemotactic activity for immune and non-immune cells expressing its receptor CXCR3. Previous studies have demonstrated that CXCL10 is involved in myocardial infarction. However, the role of CXCL10 in cardiac microvascular endothelial cell (CMEC) regulation and related mechanisms remains unclear. In this study, we investigated the effects of CXCL10 on the CMEC migration and explored its potential molecular mechanism by wound healing, cell proliferation and viability analysis. Furthermore, migration-related signaling pathways, including FAK, Erk, p38 and Smad, were examined by Western blotting. We found that CXCL10 significantly promotes CMEC migration under normal conditions and during hypoxia/ischemia. However, no significant differences in CMEC proliferation and viability were observed with or without CXCL10 treatment. CXCL10-mediated CMEC migration was greatly blocked by treatment with an anti-CXCR3 antibody. Although CXCL10 treatment promoted phosphorylation and activation of the FAK, Erk, and p38 pathways during hypoxia/ischemia, CXCL10-mediated CMEC migration was significantly blocked by p38 and FAK inhibitors, but not by an Erk inhibitor. Furthermore, CXCL10-mediated FAK activation was suppressed by the p38 inhibitor. These findings indicated that the CXCL10/CXCR3 pathway promotes the migration of CMECs under normal conditions and during hypoxia/ischemia in a proliferation-independent manner, at least in part, through regulation of the p38/FAK pathways.


Assuntos
Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quimiocina CXCL10/farmacologia , Células Endoteliais/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Receptores CXCR3/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Western Blotting , Hipóxia Celular , Células Cultivadas , Vasos Coronários/citologia , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Quinase 1 de Adesão Focal/antagonistas & inibidores , Expressão Gênica/efeitos dos fármacos , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Ratos Sprague-Dawley , Receptores CXCR3/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
7.
Cytokine ; 81: 63-70, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26891076

RESUMO

CXCL10, the chemokine with potent chemotactic activity on immune cells and other non-immune cells expressing its receptor CXCR3, has been demonstrated to involve in myocardial infarction, which was resulted from hypoxia/ischemia. The cardiac microvascular endothelial cells (CMECs) are the first cell type which is implicated by hypoxia/ischemia. However, the potential molecular mechanism by which hypoxia/ischemia regulates the expression of CXCL10 in CMECs remains unclear. In the present study, the expression of CXCL10 was firstly examined by real-time PCR and ELISA analysis. Several potential binding sites (BS) for transcription factors including NF-kappaB (NFkB), HIF1 alpha (HIF1α) and FoxO3a were identified in the promoter region of CXCL10 gene from -2000 bp to -1 bp using bioinformatics software. Luciferase reporter gene vectors for CXCL10 promoter and for activation of above transcription factors were constructed. The activation of NFkB, hypoxia-inducible transcription factor-1 alpha (HIF-1α) and FoxO3a was also analyzed by Western blotting. It was shown that the production of CXCL10 in CMECs was significantly increased by hypoxia/ischemia treatment, in parallel with the activation of CXCL10 promoter examined by reporter gene vector system. Furthermore, transcription factors including NFkB, HIF1α and FoxO3a were activated by hypoxia/ischemia in CMECs. However, over-expression of NFkB, but not that of HIF1α or FoxO3a, significantly promoted the activation of CXCL10 promoter reporter gene. These findings indicated that CXCL10 production in CMECs was significantly increased by hypoxia/ischemia, at least in part, through activation of NFkB pathway and subsequently binding to CXCL10 promoter, finally promoted the transcription of CXCL10 gene.


Assuntos
Quimiocina CXCL10/metabolismo , Vasos Coronários/citologia , Células Endoteliais/metabolismo , NF-kappa B/metabolismo , Animais , Sequência de Bases , Sítios de Ligação/genética , Western Blotting , Hipóxia Celular , Células Cultivadas , Quimiocina CXCL10/genética , Ensaio de Imunoadsorção Enzimática , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isquemia , NF-kappa B/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA