Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 628(8008): 576-581, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570677

RESUMO

The dual jaw joint of Morganucodon1,2 consists of the dentary-squamosal joint laterally and the articular-quadrate one medially. The articular-quadrate joint and its associated post-dentary bones constitute the precursor of the mammalian middle ear. Fossils documenting the transition from such a precursor to the mammalian middle ear are poor, resulting in inconsistent interpretations of this hallmark apparatus in the earliest stage of mammaliaform evolution1-5. Here we report mandibular middle ears from two Jurassic mammaliaforms: a new morganucodontan-like species and a pseudotribosphenic shuotheriid species6. The morganucodontan-like species shows many previously unknown post-dentary bone morphologies1,2 and exhibits features that suggest a loss of load-bearing function in its articular-quadrate joint. The middle ear of the shuotheriid approaches the mammalian condition in that it has features that are suitable for an exclusively auditory function, although the post-dentary bones are still attached to the dentary. With size reduction of the jaw-joint bones, the quadrate shifts medially at different degrees in relation to the articular in the two mammaliaforms. These changes provide evidence of a gradual loss of load-bearing function in the articular-quadrate jaw joint-a prerequisite for the detachment of the post-dentary bones from the dentary7-12 and the eventual breakdown of the Meckel's cartilage13-15 during the evolution of mammaliaforms.


Assuntos
Evolução Biológica , Orelha Média , Fósseis , Arcada Osseodentária , Mamíferos , Articulação Temporomandibular , Animais , Orelha Média/anatomia & histologia , Arcada Osseodentária/anatomia & histologia , Mamíferos/anatomia & histologia , Mamíferos/classificação , Mandíbula/anatomia & histologia , Articulação Temporomandibular/anatomia & histologia
2.
Nature ; 628(8008): 569-575, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570681

RESUMO

Shuotheriids are Jurassic mammaliaforms that possess pseudotribosphenic teeth in which a pseudotalonid is anterior to the trigonid in the lower molar, contrasting with the tribosphenic pattern of therian mammals (placentals, marsupials and kin) in which the talonid is posterior to the trigonid1-4. The origin of the pseudotribosphenic teeth remains unclear, obscuring our perception of shuotheriid affinities and the early evolution of mammaliaforms1,5-9. Here we report a new Jurassic shuotheriid represented by two skeletal specimens. Their complete pseudotribosphenic dentitions allow reidentification of dental structures using serial homology and the tooth occlusal relationship. Contrary to the conventional view1,2,6,10,11, our findings show that dental structures of shuotheriids can be homologized to those of docodontans and partly support homologous statements for some dental structures between docodontans and other mammaliaforms6,12. The phylogenetic analysis based on new evidence removes shuotheriids from the tribosphenic ausktribosphenids (including monotremes) and clusters them with docodontans to form a new clade, Docodontiformes, that is characterized by pseudotribosphenic features. In the phylogeny, docodontiforms and 'holotherians' (Kuehneotherium, monotremes and therians)13 evolve independently from a Morganucodon-like ancestor with triconodont molars by labio-lingual widening their posterior teeth for more efficient food processing. The pseudotribosphenic pattern passed a cusp semitriangulation stage9, whereas the tribosphenic pattern and its precursor went through a stage of cusp triangulation. The two different processes resulted in complex tooth structures and occlusal patterns that elucidate the earliest diversification of mammaliaforms.


Assuntos
Evolução Biológica , Fósseis , Mamíferos , Dente , Animais , Eutérios/anatomia & histologia , Mamíferos/anatomia & histologia , Mamíferos/classificação , Mamíferos/fisiologia , Marsupiais/anatomia & histologia , Dente Molar/anatomia & histologia , Dente Molar/fisiologia , Filogenia , Dente/anatomia & histologia , Dente/fisiologia , Mastigação
3.
Cell Mol Immunol ; 20(8): 924-940, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37336990

RESUMO

The interaction between the gastric epithelium and immune cells plays key roles in H. pylori-associated pathology. Here, we demonstrate a procolonization and proinflammatory role of tubulointerstitial nephritis antigen-like 1 (TINAGL1), a newly discovered matricellular protein, in H. pylori infection. Increased TINAGL1 production by gastric epithelial cells (GECs) in the infected gastric mucosa was synergistically induced by H. pylori and IL-1ß via the ERK-SP1 pathway in a cagA-dependent manner. Elevated human gastric TINAGL1 correlated with H. pylori colonization and the severity of gastritis, and mouse TINAGL1 derived from non-bone marrow-derived cells promoted bacterial colonization and inflammation. Importantly, H. pylori colonization and inflammation were attenuated in Tinagl1-/- and Tinagl1ΔGEC mice and were increased in mice injected with mouse TINAGL1. Mechanistically, TINAGL1 suppressed CCL21 expression and promoted CCL2 production in GECs by directly binding to integrin α5ß1 to inhibit ERK and activate the NF-κB pathway, respectively, which not only led to decreased gastric influx of moDCs via CCL21-CCR7-dependent migration and, as a direct consequence, reduced the bacterial clearance capacity of the H. pylori-specific Th1 response, thereby promoting H. pylori colonization, but also resulted in increased gastric influx of Ly6Chigh monocytes via CCL2-CCR2-dependent migration. In turn, TINAGL1 induced the production of the proinflammatory protein S100A11 by Ly6Chigh monocytes, promoting H. pylori-associated gastritis. In summary, we identified a model in which TINAGL1 collectively ensures H. pylori persistence and promotes gastritis.


Assuntos
Gastrite , Infecções por Helicobacter , Helicobacter pylori , Nefrite Intersticial , Camundongos , Humanos , Animais , Gastrite/microbiologia , Gastrite/patologia , Inflamação , Proteínas de Bactérias/metabolismo
4.
Cancer Cell ; 41(4): 693-710.e8, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36963400

RESUMO

Malignant gliomas are largely refractory to immune checkpoint blockade (ICB) therapy. To explore the underlying immune regulators, we examine the microenvironment in glioma and find that tumor-infiltrating T cells are mainly confined to the perivascular cuffs and express high levels of CCR5, CXCR3, and programmed cell death protein 1 (PD-1). Combined analysis of T cell clustering with T cell receptor (TCR) clone expansion shows that potential tumor-killing T cells are mainly categorized into pre-exhausted/exhausted and effector CD8+ T subsets, as well as cytotoxic CD4+ T subsets. Notably, a distinct subpopulation of CD4+ T cells exhibits innate-like features with preferential interleukin-8 (IL-8) expression. With IL-8-humanized mouse strain, we demonstrate that IL-8-producing CD4+ T, myeloid, and tumor cells orchestrate myeloid-derived suppressor cell infiltration and angiogenesis, which results in enhanced tumor growth but reduced ICB efficacy. Antibody-mediated IL-8 blockade or the inhibition of its receptor, CXCR1/2, unleashes anti-PD-1-mediated antitumor immunity. Our findings thus highlight IL-8 as a combinational immunotherapy target for glioma.


Assuntos
Glioma , Inibidores de Checkpoint Imunológico , Interleucina-8 , Animais , Camundongos , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/patologia , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia/métodos , Interleucina-8/metabolismo , Linfócitos T , Microambiente Tumoral
5.
Adv Sci (Weinh) ; 9(5): e2103543, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34957697

RESUMO

Neutrophils constitute abundant cellular components in human gastric cancer (GC) tissues, but their protumorigenic subset in pathogenesis of GC progression is unclear. Here, it is found that patients with GC show significantly higher neutrophil infiltration in tumors that is regulated by CXCL12-CXCR4 chemotaxis. These tumor-infiltrating neutrophils express high level immunosuppressive molecules FasL and PD-L2, and this FasL+ PD-L2+ neutrophil subset with a unique phenotype constitutes at least 20% of all neutrophils in advanced GC and predicts poor patient survival. Tumor induces neutrophils to express FasL and PD-L2 proteins with similar phenotype to those in GC tumors in both time-dependent and dose-dependent manners. Mechanistically, Th17 cell-derived IL-17A and tumor cell-derived G-CSF can significantly induce neutrophil FasL and PD-L2 expression via activating ERK-NF-κB and JAK-STAT3 signaling pathway, respectively. Importantly, upon over-expressing FasL and PD-L2, neutrophils acquire immunosuppressive functions on tumor-specific CD8+ T-cells and promote the growth and progression of human GC tumors in vitro and in vivo, which can be reversed by blocking FasL and PD-L2 on these neutrophils. Thus, the work identifies a novel protumorigenic FasL+ PD-L2+ neutrophil subset in GC and provides new insights for human cancer immunosuppression and anti-cancer therapies targeting these pathogenic cells.


Assuntos
Neutrófilos , Neoplasias Gástricas , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Progressão da Doença , Humanos , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Neutrófilos/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia
6.
Natl Sci Rev ; 8(10): nwab131, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34858616
7.
Clin Sci (Lond) ; 135(22): 2541-2558, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34730176

RESUMO

OBJECTIVE: Regulated in development and DNA damage responses-1 (REDD1) is a conserved and ubiquitous protein, which is induced in response to multiple stimuli. However, the regulation, function and clinical relevance of REDD1 in Helicobacter pylori-associated gastritis are presently unknown. APPROACH: Immunohistochemistry, real-time PCR and Western blot analyses were performed to examine the levels of REDD1 in gastric samples from H. pylori-infected patients and mice. Gastric tissues from Redd1-/- and wildtype (WT, control) mice were examined for inflammation. Gastric epithelial cells (GECs), monocytes and T cells were isolated, stimulated and/or cultured for REDD1 regulation and functional assays. RESULTS: REDD1 was increased in gastric mucosa of H. pylori-infected patients and mice. H. pylori induced GECs to express REDD1 via the phosphorylated cytotoxin associated gene A (cagA) that activated MAPKp38 pathway to mediate NF-κB directly binding to REDD1 promoter. Human gastric REDD1 increased with the severity of gastritis, and mouse REDD1 from non-marrow chimera-derived cells promoted gastric inflammation that was characterized by the influx of MHCII+ monocytes. Importantly, gastric inflammation, MHCII+ monocyte infiltration, IL-23 and IL-17A were attenuated in Redd1-/- mice. Mechanistically, REDD1 in GECs regulated CXCL1 production, which attracted MHCII+ monocytes migration by CXCL1-CXCR2 axis. Then H. pylori induced MHCII+ monocytes to secrete IL-23, which favored IL-17A-producing CD4+ cell (Th17 cell) polarization, thereby contributing to the development of H. pylori-associated gastritis. CONCLUSIONS: The present study identifies a novel regulatory network involving REDD1, which collectively exert a pro-inflammatory effect within gastric microenvironment. Efforts to inhibit this REDD1-dependent pathway may prove valuable strategies in treating of H. pylori-associated gastritis.


Assuntos
Citocinas/metabolismo , Mucosa Gástrica/microbiologia , Gastrite/microbiologia , Infecções por Helicobacter/microbiologia , Helicobacter pylori/patogenicidade , Células Th17/microbiologia , Fatores de Transcrição/metabolismo , Animais , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Mucosa Gástrica/imunologia , Mucosa Gástrica/metabolismo , Gastrite/imunologia , Gastrite/metabolismo , Infecções por Helicobacter/complicações , Helicobacter pylori/imunologia , Helicobacter pylori/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Fenótipo , Fosforilação , Células Th17/imunologia , Células Th17/metabolismo , Fatores de Transcrição/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
Natl Sci Rev ; 8(5): nwaa188, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34691634

RESUMO

We report a new Cretaceous multituberculate mammal with 3D auditory bones preserved. Along with other fossil and extant mammals, the unequivocal auditory bones display features potentially representing ancestral phenotypes of the mammalian middle ear. These phenotypes show that the ectotympanic and the malleus-incus complex changed notably during their retreating from the dentary at various evolutionary stages and suggest convergent evolution of some features to extant mammals. In contrast, the incudomalleolar joint was conservative in having a braced hinge configuration, which narrows the morphological gap between the quadroarticular jaw joint of non-mammalian cynodonts and the incudomalleolar articulations of extant mammals. The saddle-shaped and abutting malleus-incus complexes in therians and monotremes, respectively, could have evolved from the braced hinge joint independently. The evolutionary changes recorded in the Mesozoic mammals are largely consistent with the middle ear morphogenesis during the ontogeny of extant mammals, supporting the relation between evolution and development.

9.
Clin Transl Med ; 11(6): e484, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34185422

RESUMO

RATIONALE: Neutrophils constitute massive cellular constituents in inflammatory human gastric cancer (GC) tissues, but their roles in pathogenesis of inflammatory T helper (Th) subsets are still unknown. METHODS: Flow cytometry analysis and immunohistochemistry were used to analyze the responses and phenotypes of neutrophils in different samples from 51 patients with GC. Kaplan-Meier plots and Multivariate analysis for the survival of patients were used by log-rank tests and Cox proportional hazards models. Neutrophils and CD4+ T cells were purified and cultured for ex vivo, in vitro and in vivo regulation and function assays. RESULTS: GC patients exhibited increased tumoral neutrophil infiltration with GC progression and poor patient prognosis. Intratumoral neutrophils accumulated in GC tumors via CXCL6/CXCL8-CXCR1-mediated chemotaxis, and expressed activated molecule CD54 and co-signaling molecule B7-H2. Neutrophils induced by tumors strongly expressed CD54 and B7-H2 in both dose- and time-dependent manners, and a close correlation was obtained between the expressions of CD54 and B7-H2 on intratumoral neutrophils. Tumor-derived tumor necrosis factor-α (TNF-α) promoted neutrophil activation and neutrophil B7-H2 expression through ERK-NF-κB pathway, and a significant correlation was found between the levels of TNF-α and CD54+ or B7-H2+ neutrophils in tumor tissues. Tumor-infiltrating and tumor-conditioned neutrophils effectively induced IL-17A-producing Th subset polarization through a B7-H2-dependent manner ex vivo and these polarized IL-17A-producing Th cells exerted protumorigenic roles by promoting GC tumor cell proliferation via inflammatory molecule IL-17A in vitro, which promoted the progression of human GC in vivo; these effects could be reversed when IL-17A is blocked. Moreover, increased B7-H2+ neutrophils and IL-17A in tumors were closely related to advanced GC progression and predicted poor patient survival. CONCLUSION: We illuminate novel underlying mechanisms that TNF-α-activated neutrophils link B7-H2 to protumorigenic IL-17A-producing Th subset polarization in human GC. Blocking this pathological TNF-α-B7-H2-IL-17A pathway may be useful therapeutic strategies for treating GC.


Assuntos
Ligante Coestimulador de Linfócitos T Induzíveis/metabolismo , Interleucina-17/metabolismo , Ativação de Neutrófilo , Neutrófilos/imunologia , Neoplasias Gástricas/patologia , Linfócitos T Auxiliares-Indutores/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Apoptose , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Ligante Coestimulador de Linfócitos T Induzíveis/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Prognóstico , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/metabolismo , Taxa de Sobrevida , Células Tumorais Cultivadas , Fator de Necrose Tumoral alfa/genética , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Clin Immunol ; 227: 108753, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33945871

RESUMO

Neutrophils are conspicuous components of gastric cancer (GC) tumors, increasing with tumor progression and poor patient survival. However, the phenotype, regulation and clinical relevance of neutrophils in human GC are presently unknown. Most intratumoral neutrophils showed an activated CD54+ phenotype and expressed high level B7-H3. Tumor tissue culture supernatants from GC patients induced the expression of CD54 and B7-H3 on neutrophils in time-dependent and dose-dependent manners. Locally enriched CD54+ neutrophils and B7-H3+ neutrophils positively correlated with increased granulocyte-macrophage colony stimulating factor (GM-CSF) detection ex vivo; and in vitro GM-CSF induced the expression of CD54 and B7-H3 on neutrophils in both time-dependent and dose-dependent manners. Furthermore, GC tumor-derived GM-CSF activated neutrophils and induced neutrophil B7-H3 expression via JAK-STAT3 signaling pathway activation. Finally, intratumoral B7-H3+ neutrophils increased with tumor progression and independently predicted reduced overall survival. Collectively, these results suggest B7-H3+ neutrophils to be potential biomarkers in GC.


Assuntos
Antígenos B7/metabolismo , Carcinoma/metabolismo , Linfócitos do Interstício Tumoral/metabolismo , Ativação de Neutrófilo , Neutrófilos/metabolismo , Neoplasias Gástricas/metabolismo , Adulto , Idoso , Carcinoma/patologia , Progressão da Doença , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Humanos , Técnicas In Vitro , Molécula 1 de Adesão Intercelular/metabolismo , Janus Quinases/efeitos dos fármacos , Janus Quinases/metabolismo , Masculino , Pessoa de Meia-Idade , Neutrófilos/efeitos dos fármacos , Prognóstico , Fator de Transcrição STAT3/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Neoplasias Gástricas/patologia , Taxa de Sobrevida , Adulto Jovem
11.
Nature ; 592(7855): 577-582, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33828300

RESUMO

Mammaliamorpha comprises the last common ancestor of Tritylodontidae and Mammalia plus all its descendants1. Tritylodontids are nonmammaliaform herbivorous cynodonts that originated in the Late Triassic epoch, diversified in the Jurassic period2-5 and survived into the Early Cretaceous epoch6,7. Eutriconodontans have generally been considered to be an extinct mammalian group, although different views exist8. Here we report a newly discovered tritylodontid and eutriconodontan from the Early Cretaceous Jehol Biota of China. Eutriconodontans are common in this biota9, but it was not previously known to contain tritylodontids. The two distantly related species show convergent features that are adapted for fossorial life, and are the first 'scratch-diggers' known from this biota. Both species also show an increased number of presacral vertebrae, relative to the ancestral state in synapsids or mammals10,11, that display meristic and homeotic changes. These fossils shed light on the evolutionary development of the axial skeleton in mammaliamorphs, which has been the focus of numerous studies in vertebrate evolution12-17 and developmental biology18-28. The phenotypes recorded by these fossils indicate that developmental plasticity in somitogenesis and HOX gene expression in the axial skeleton-similar to that observed in extant mammals-was already in place in stem mammaliamorphs. The interaction of these developmental mechanisms with natural selection may have underpinned the diverse phenotypes of body plan that evolved independently in various clades of mammaliamorph.


Assuntos
Evolução Biológica , Fósseis , Mamíferos/classificação , Animais , Teorema de Bayes , China , Dentição , Membro Anterior/anatomia & histologia , Mamíferos/anatomia & histologia , Filogenia , Esqueleto
12.
J Immunol Res ; 2021: 6613247, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33763491

RESUMO

Neutrophils are prominent components of gastric cancer (GC) tumors and exhibit distinct phenotypes in GC environment. However, the phenotype, regulation, and clinical relevance of neutrophils in human GC are presently unknown. Here, immunohistochemistry, real-time PCR, and flow cytometry analyses were performed to examine levels and phenotype of neutrophils in samples from 41 patients with GC, and also isolated, stimulated, and/or cultured neutrophils for in vitro regulation assays. Finally, we performed Kaplan-Meier plots for overall survival by using the log-rank test to evaluate the clinical relevance of neutrophils and their subsets. In our study, neutrophils in tumor tissues were significantly higher than those in nontumor tissues and were positively associated with tumor progression but negatively correlated with GC patient survival. Most intratumoral neutrophils showed an activated CD54+ phenotype and expressed high-level immunosuppressive molecule B7-H4. Tumor tissue culture supernatants from GC patients induced neutrophils to express CD54 and B7-H4 in both time-dependent and dose-dependent manners. Locally enriched CD54+ neutrophils and B7-H4+ neutrophils positively correlated with increased granulocyte-macrophage colony-stimulating factor (GM-CSF) detection ex vivo, and in vitro GM-CSF induced the expression of CD54 and B7-H4 on neutrophils in a time-dependent and dose-dependent manner. Moreover, GC tumor-derived GM-CSF activated neutrophils and induced neutrophil B7-H4 expression via Janus kinase (JAK)-signal transducer and activator of transcription 3 (STAT3) signaling pathway activation. Furthermore, higher intratumoral B7-H4+ neutrophil percentage/number was found in GC patients with advanced tumor node metastasis stage and reduced overall survival following surgery. Our results illuminate a novel regulating mechanism of B7-H4 expression on tumor-activated neutrophils in GC, suggesting that functional inhibition of these novel GM-CSF-B7-H4 pathways may be a suitable therapeutic strategy to treat the immune tolerance feature of GC.


Assuntos
Neutrófilos/imunologia , Neoplasias Gástricas/imunologia , Inibidor 1 da Ativação de Células T com Domínio V-Set/metabolismo , Células Cultivadas , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Tolerância Imunológica , Molécula 1 de Adesão Intercelular/metabolismo , Janus Quinases/metabolismo , Naftóis/metabolismo , Estadiamento de Neoplasias , Ativação de Neutrófilo , Fenótipo , Transdução de Sinais , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/mortalidade , Sulfonamidas/metabolismo , Análise de Sobrevida , Inibidor 1 da Ativação de Células T com Domínio V-Set/genética
13.
Mol Cancer Res ; 19(6): 968-978, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33771880

RESUMO

Actin cytoskeleton dynamic rearrangement is required for tumor cell metastasis and is a key characteristic of Helicobacter pylori (H. pylori)-infected host cells. Actin cytoskeleton modulation is coordinated by multiple actin-binding proteins (ABP). Through Kyoto encyclopedia of gene and genomes database, GEPIA website, and real-time PCR data, we found that H. pylori infection significantly induced L-plastin, a key ABP, in gastric cancer cells. We further explored the regulation and function of L-plastin in H. pylori-associated gastric cancer and found that, mechanistically, H. pylori infection induced gastric cancer cells to express L-plastin via cagA-activated ERK signaling pathway to mediate SP1 binding to L-plastin promoter. Moreover, this increased L-plastin promoted gastric cancer cell proliferation and migration in vitro and facilitated the growth and metastasis of gastric cancer in vivo. Finally, we detected the expression pattern of L-plastin in gastric cancer tissues, and found that L-plastin was increased in gastric cancer tissues and that this increase of L-plastin positively correlated with cagA + H. pylori infection status. Overall, our results elucidate a novel mechanism of L-plastin expression induced by H. pylori, and a new function of L-plastin-facilitated growth and metastasis of gastric cancer, and thereby implicating L-plastin as a potential therapeutic target against gastric cancer. IMPLICATIONS: Our results elucidate a novel mechanism of L-plastin expression induced by H. pylori in gastric cancer, and a new function of L-plastin-facilitated gastric cancer growth and metastasis, implicating L-plastin as a potential therapeutic target against gastric cancer.


Assuntos
Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Infecções por Helicobacter/genética , Helicobacter pylori/genética , Sistema de Sinalização das MAP Quinases/genética , Glicoproteínas de Membrana/genética , Proteínas dos Microfilamentos/genética , Fator de Transcrição Sp1/genética , Neoplasias Gástricas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/microbiologia , Helicobacter pylori/fisiologia , Humanos , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas dos Microfilamentos/metabolismo , Pessoa de Meia-Idade , Metástase Neoplásica , Fator de Transcrição Sp1/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/microbiologia , Transplante Heterólogo
14.
Cell Mol Gastroenterol Hepatol ; 12(2): 395-425, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33676046

RESUMO

BACKGROUND & AIMS: Rev-erbα represents a powerful transcriptional repressor involved in immunity. However, the regulation, function, and clinical relevance of Rev-erbα in Helicobacter pylori infection are presently unknown. METHODS: Rev-erbα was examined in gastric samples from H pylori-infected patients and mice. Gastric epithelial cells (GECs) were isolated and infected with H pylori for Rev-erbα regulation assays. Gastric tissues from Rev-erbα-/- and wild-type (littermate control) mice or these mice adoptively transferred with CD4+ T cells from IFN-γ-/- and wild-type mice, bone marrow chimera mice and mice with in vivo pharmacological activation or inhibition of Rev-erbα were examined for bacteria colonization. GECs, CD45+CD11c-Ly6G-CD11b+CD68- myeloid cells and CD4+ T cells were isolated, stimulated and/or cultured for Rev-erbα function assays. RESULTS: Rev-erbα was increased in gastric mucosa of H pylori-infected patients and mice. H pylori induced GECs to express Rev-erbα via the phosphorylated cagA that activated ERK signaling pathway to mediate NF-κB directly binding to Rev-erbα promoter, which resulted in increased bacteria colonization within gastric mucosa. Mechanistically, Rev-erbα in GECs not only directly suppressed Reg3b and ß-defensin-1 expression, which resulted in impaired bactericidal effects against H pylori of these antibacterial proteins in vitro and in vivo; but also directly inhibited chemokine CCL21 expression, which led to decreased gastric influx of CD45+CD11c-Ly6G-CD11b+CD68- myeloid cells by CCL21-CCR7-dependent migration and, as a direct consequence, reduced bacterial clearing capacity of H pylori-specific Th1 cell response. CONCLUSIONS: Overall, this study identifies a model involving Rev-erbα, which collectively ensures gastric bacterial persistence by suppressing host gene expression required for local innate and adaptive defense against H pylori.


Assuntos
Imunidade Adaptativa , Infecções por Helicobacter/imunologia , Helicobacter pylori/fisiologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Estômago/microbiologia , Adulto , Idoso , Antígenos de Bactérias/metabolismo , Antígenos CD/metabolismo , Proteínas de Bactérias/metabolismo , Movimento Celular , Contagem de Colônia Microbiana , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Feminino , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiologia , Mucosa Gástrica/patologia , Infecções por Helicobacter/sangue , Infecções por Helicobacter/microbiologia , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Células Mieloides/metabolismo , NF-kappa B/metabolismo , Proteínas Associadas a Pancreatite/metabolismo , Estômago/patologia , Células Th1/imunologia , Adulto Jovem , beta-Defensinas/metabolismo
15.
J Immunother Cancer ; 8(2)2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32753468

RESUMO

BACKGROUND: Overexpression of programmed cell death protein 1 (PD-1) is linked to CD8+ T cell dysfunction and contributes to tumor immune escape. However, the prevalence and functional regulations of PD-1 expression on CD8+ T cells in human gastric cancer (GC) remain largely unknown. METHODS: Flow cytometry was performed to analyze the level, phenotype, functional and clinical relevance of PD-1+CD8+ T cells in GC patients. Peripheral blood CD8+ T cells were purified and subsequently exposed to culture supernatants from digested primary GC tumor tissues (TSN) in vitro for PD-1 expression and functional assays. Tumor responses to adoptively transferred TSN-stimulated CD8+ T cells or to the TSN-stimulated CD8+ T cell transfer combined with an anti-PD-1 antibody injection were measured in an in vivo xenograft mouse model. RESULTS: GC patients' tumors showed a significantly increased PD-1+CD8+ T cell infiltration. However, these GC-infiltrating PD-1+CD8+ T cells showed equivalent function to their PD-1-CD8+ counterparts and they did not predict tumor progression. High level of transforming growth factor-ß1 (TGF-ß1) in tumors was positively correlated with PD-1+CD8+ T cell infiltration, and in vitro GC-derived TGF-ß1 induced PD-1 expression on CD8+ T cells via Smad3 signaling, whereas Smad2 signaling was involved in GC-derived TGF-ß1-mediated CD8+ T cell dysfunction. Furthermore, GC-derived TGF-ß1-mediated CD8+ T cell dysfunction contributed to tumor growth in vivo that could not be attenuated by PD-1 blockade. CONCLUSIONS: Our data highlight that GC-derived TGF-ß1 promotes PD-1 independent CD8+ T cell dysfunction. Therefore, restoring CD8+ T cell function by a combinational PD-1 and TGF-ß1 blockade might benefit future GC immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Receptor de Morte Celular Programada 1/imunologia , Neoplasias Gástricas/imunologia , Animais , Feminino , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
16.
Cell Death Dis ; 11(7): 498, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32612120

RESUMO

Gastric epithelial cells (GECs) provide the first point of contact of the host by Helicobacter pylori (H. pylori), and the interaction between H. pylori and GECs plays a critical role in H. pylori-associated diseases. Aberrant expression of transcription factors (TFs) contributes to the pathogenesis of inflammatory disorders, including H. pylori-associated gastritis. ETS (E26 transformation specific) transcription factor family is one of the largest families of evolutionarily conserved TFs, regulating critical functions during cell homeostasis. We screened ETS family gene expression in H. pylori-infected mouse and human GECs and found that ETS1 (ETS proto-oncogene 1, transcription factor) expression was highly affected by H. pylori infection. Then, we reported that ETS1 was induced in GECs by H. pylori via cagA activated NF-κB pathway. Notably, we demonstrated that proinflammatory cytokines IL-1ß and TNFα have synergistic effects on ETS1 expression during H. pylori infection in an NF-κB-pathway-dependent manner. RNA-seq assay and Gene-ontology functional analysis revealed that ETS1 positively regulate inflammatory response during H. pylori infection. Increased ETS1 is also detected in the gastric mucosa of mice and patients with H. pylori infection. Collectively, these data showed that ETS1 may play an important role in the pathogenesis of H. pylori-associated gastritis.


Assuntos
Células Epiteliais/metabolismo , Células Epiteliais/patologia , Mucosa Gástrica/patologia , Gastrite/metabolismo , Gastrite/microbiologia , Helicobacter pylori/fisiologia , Inflamação/patologia , Proteína Proto-Oncogênica c-ets-1/metabolismo , Animais , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Regulação da Expressão Gênica , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/microbiologia , Humanos , Interleucina-1beta/metabolismo , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Proto-Oncogene Mas , Proteína Proto-Oncogênica c-ets-1/genética , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
17.
JCI Insight ; 5(15)2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32634127

RESUMO

Arrestin domain containing 3 (ARRDC3) represents a newly discovered α-arrestin involved in obesity, inflammation, and cancer. Here, we demonstrate a proinflammation role of ARRDC3 in Helicobacter pylori-associated gastritis. Increased ARRDC3 was detected in gastric mucosa of patients and mice infected with H. pylori. ARRDC3 in gastric epithelial cells (GECs) was induced by H. pylori, regulated by ERK and PI3K-AKT pathways in a cagA-dependent manner. Human gastric ARRDC3 correlated with the severity of gastritis, and mouse ARRDC3 from non-BM-derived cells promoted gastric inflammation. This inflammation was characterized by the CXCR2-dependent influx of CD45+CD11b+Ly6C-Ly6G+ neutrophils, whose migration was induced via the ARRDC3-dependent production of CXCL2 by GECs. Importantly, gastric inflammation was attenuated in Arrdc3-/- mice but increased in protease-activated receptor 1-/- (Par1-/-) mice. Mechanistically, ARRDC3 in GECs directly interacted with PAR1 and negatively regulated PAR1 via ARRDC3-mediated lysosomal degradation, which abrogated the suppression of CXCL2 production and following neutrophil chemotaxis by PAR1, thereby contributing to the development of H. pylori-associated gastritis. This study identifies a regulatory network involving H. pylori, GECs, ARRDC3, PAR1, and neutrophils, which collectively exert a proinflammatory effect within the gastric microenvironment. Efforts to inhibit this ARRDC3-dependent pathway may provide valuable strategies in treating of H. pylori-associated gastritis.


Assuntos
Arrestinas/metabolismo , Arrestinas/fisiologia , Mucosa Gástrica/patologia , Gastrite/patologia , Infecções por Helicobacter/complicações , Inflamação/patologia , Receptor PAR-1/fisiologia , Animais , Arrestinas/genética , Feminino , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiologia , Gastrite/metabolismo , Gastrite/microbiologia , Infecções por Helicobacter/microbiologia , Helicobacter pylori/isolamento & purificação , Inflamação/metabolismo , Inflamação/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
18.
Zoology (Jena) ; 140: 125767, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32408123

RESUMO

Evolution of the definitive mammalian middle ear (DMME) as a textbook example in vertebrate evolution has been extensively studied during the last 200 years. Fossils provide the direct evidence on evolutionary stages of the DMME, but because of delicacy of the miniscule ossicles, unequivocal evidence about them has always been rare. Recent work on a stem therian mammal (124 million years old) shows presence of the surangular bone in the basal mammals as a primitive feature and potentially retained in the embryonic stage of some extant mammals. The work also proposed that the DMME and mammalian jaw evolved in a modular fashion. It started as a highly integrated complex in structures and functions, the two modules were regulated by similar developmental genetic mechanisms and eventually decoupled under natural selection so that the physical constraint the two modules imposed on each other was removed, allowing future improvement of each module for better function.


Assuntos
Evolução Biológica , Orelha Média/anatomia & histologia , Arcada Osseodentária/anatomia & histologia , Mamíferos/anatomia & histologia , Animais , Fósseis , Mamíferos/genética
19.
Cell Death Dis ; 11(3): 189, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32184393

RESUMO

Adrenomedullin (ADM) is a multifunctional peptide that is expressed by many surface epithelial cells, but its relevance to Helicobacter pylori (H. pylori)-induced gastritis is unknown. Here, we found that gastric ADM expression was elevated in gastric mucosa of H. pylori-infected patients and mice. In H. pylori-infected human gastric mucosa, ADM expression was positively correlated with the degree of gastritis; accordingly, blockade of ADM resulted in decreased inflammation within the gastric mucosa of H. pylori-infected mice. During H. pylori infection, ADM production was promoted via PI3K-AKT signaling pathway activation by gastric epithelial cells in a cagA-dependent manner, and resulted in increased inflammation within the gastric mucosa. This inflammation was characterized by the increased IFN-γ-producing T cells, whose differentiation was induced via the phosphorylation of AKT and STAT3 by ADM derived from gastric epithelial cells. ADM also induced macrophages to produce IL-12, which promoted the IFN-γ-producing T-cell responses, thereby contributing to the development of H. pylori-associated gastritis. Accordingly, blockade of IFN-γ or knockout of IFN-γ decreased inflammation within the gastric mucosa of H. pylori-infected mice. This study identifies a novel regulatory network involving H. pylori, gastric epithelial cells, ADM, macrophages, T cells, and IFN-γ, which collectively exert a pro-inflammatory effect within the gastric microenvironment.


Assuntos
Adrenomedulina/efeitos adversos , Gastrite/genética , Helicobacter pylori/patogenicidade , Interferon gama/metabolismo , Linfócitos T/metabolismo , Vasodilatadores/efeitos adversos , Animais , Gastrite/metabolismo , Humanos , Camundongos
20.
FASEB J ; 34(1): 1169-1181, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914631

RESUMO

BHLHE40, a member of the basic helix-loop-helix transcription factor family, has been reported to play an important role in inflammatory diseases. However, the regulation and function of BHLHE40 in Helicobacter pylori (H pylori)-associated gastritis is unknown. We observed that gastric BHLHE40 was significantly elevated in patients and mice with H pylori infection. Then, we demonstrate that H pylori-infected GECs express BHLHE40 via cagA-ERK pathway. BHLHE40 translocates to cell nucleus, and then binds to cagA protein-activated p-STAT3 (Tyr705). The complex increases chemotactic factor CXCL12 expression (production). Release of CXCL12 from GECs fosters CD4+ T cell infiltration in the gastric mucosa. Our results identify the cagA-BHLHE40-CXCL12 axis that contributes to inflammatory response in gastric mucosa during H pylori infection.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Quimiocina CXCL12/metabolismo , Células Epiteliais/metabolismo , Gastrite/microbiologia , Infecções por Helicobacter/metabolismo , Proteínas de Homeodomínio/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Linfócitos T CD4-Positivos/citologia , Núcleo Celular/metabolismo , Feminino , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiologia , Gastrite/metabolismo , Regulação da Expressão Gênica , Helicobacter pylori , Humanos , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Estômago/microbiologia , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA