Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Science ; 385(6709): 678-684, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39116220

RESUMO

Bacterial small molecule metabolites such as adenosine-diphosphate-d-glycero-ß-d-manno-heptose (ADP-heptose) and their derivatives act as effective innate immune agonists in mammals. We show that functional nucleotide-diphosphate-heptose biosynthetic enzymes (HBEs) are distributed widely in bacteria, archaea, eukaryotes, and viruses. We identified a conserved STTR5 motif as a hallmark of heptose nucleotidyltransferases that can synthesize not only ADP-heptose but also cytidine-diphosphate (CDP)- and uridine-diphosphate (UDP)-heptose. Both CDP- and UDP-heptoses are agonists that trigger stronger alpha-protein kinase 1 (ALPK1)-dependent immune responses than ADP-heptose in human and mouse cells and mice. We also produced ADP-heptose in archaea and verified its innate immune agonist functions. Hence, the ß-d-manno-heptoses are cross-kingdom, small-molecule, pathogen-associated molecular patterns that activate the ALPK1-dependent innate immune signaling cascade.


Assuntos
Heptoses , Nucleotidiltransferases , Moléculas com Motivos Associados a Patógenos , Animais , Humanos , Camundongos , Motivos de Aminoácidos , Archaea/enzimologia , Bactérias/enzimologia , Bactérias/metabolismo , Heptoses/biossíntese , Heptoses/imunologia , Imunidade Inata , Nucleotidiltransferases/química , Nucleotidiltransferases/classificação , Nucleotidiltransferases/genética , Moléculas com Motivos Associados a Patógenos/imunologia , Moléculas com Motivos Associados a Patógenos/metabolismo , Proteínas Quinases/metabolismo , Vírus/enzimologia
2.
Adv Sci (Weinh) ; 11(35): e2401708, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38995095

RESUMO

Modular polyketide synthases (PKSs) are capable of synthesizing diverse natural products with fascinating bioactivities. Canonical enoyl-CoA hydratases (ECHs) are components of the ß-branching cassette that modifies the polyketide chain by adding a ß-methyl branch. Herein, it is demonstrated that the deletion of an atypical ECHQ domain (featuring a Q280 residue) of Art21, a didomain protein contains an ECHQ domain and a thioesterase (TE) domain, reprograms the polyketide assembly line from synthesizing tetracyclic aurantinins (ARTs) to bicyclic auritriacids (ATAs) with much lower antibacterial activities. Genes encoding the ECHQ-TE didomain proteins distribute in many PKS gene clusters from different bacteria. Significantly, the ART PKS machinery can be directed to make ARTs, ATAs, or both of them by employing appropriate ECHQ-TE proteins, implying a great potential for using this reprogramming strategy in polyketide structure diversification.


Assuntos
Enoil-CoA Hidratase , Policetídeo Sintases , Policetídeos , Policetídeos/metabolismo , Policetídeo Sintases/metabolismo , Policetídeo Sintases/genética , Policetídeo Sintases/química , Enoil-CoA Hidratase/metabolismo , Enoil-CoA Hidratase/genética , Família Multigênica
3.
Appl Microbiol Biotechnol ; 107(7-8): 2403-2412, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36929192

RESUMO

Polyketides are a class of natural products with astonishing structural diversities, fascinating biological activities, and a versatile of applications. In polyketides biosynthesis, acyltransferases (ATs) are the 'gatekeeping' enzymes selecting the specific CoA-activated acyl groups as building blocks and transferring them onto the phosphopantetheine arm of acyl carrier proteins (ACPs) to enable the following condensation reactions to assemble the polyketide chain. Herein, the Art2 protein from aurantinins, a group of the antibacterial polyketides, is characterized in vitro as an AT that can load a CoA-activated succinyl unit onto the first ACP domain of Art17 (ACPArt17-1). In addition, another two proteins, GbnB and EtnB, involved in the biosynthesis of gladiolin and etnangien respectively, were traced by literature mining, homologous searching, and product structure analysis and then identified as functional succinyl-CoA ATs by the ACPArt17-1 assays. Taken together, by the assay method employing ACPArt17-1 as an acyl acceptor, we identified three ATs that can introduce a succinyl unit into the polyketide assembly line, which enriches the toolbox of polyketide biosynthetic enzymes and sets a stage for incorporating a succinyl unit into polyketide backbones in synthetic biological manners. KEY POINTS: • Three acyltransferases that are able to load ACP with a succinyl unit were characterized in vitro. • ACPArt17-1 can be used as an acceptor to assay succinyl-CoA AT from different polyketides. • The succinyl unit can be incorporated into polyketides assembly process.


Assuntos
Aciltransferases , Policetídeos , Aciltransferases/metabolismo , Policetídeos/metabolismo , Acil Coenzima A/metabolismo , Antibacterianos , Policetídeo Sintases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA