Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Brain Res ; 1823: 148671, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-37952872

RESUMO

The commonly used general anesthetic propofol can enhance the γ-aminobutyric acid-mediated inhibitory synaptic transmission and depress the glutamatergic excitatory synaptic transmission to achieve general anesthesia and other outcomes. In addition to the actions at postsynaptic sites, the modulation of presynaptic activity by propofol is thought to contribute to neurophysiological effects of the anesthetic, although potential targets of propofol within presynaptic nerve terminals are incompletely studied at present. In this study, we explored the possible linkage of propofol to synapsins, a family of neuron-specific phosphoproteins which are the most abundant proteins on presynaptic vesicles, in the adult mouse brain in vivo. We found that an intraperitoneal injection of propofol at a dose that caused loss of righting reflex increased basal levels of synapsin phosphorylation at the major representative phosphorylation sites (serine 9, serine 62/67, and serine 603) in the prefrontal cortex (PFC) of male and female mice. Propofol also elevated synapsin phosphorylation at these sites in the striatum and S9 and S62/67 phosphorylation in the hippocampus, while propofol had no effect on tyrosine hydroxylase phosphorylation in striatal nerve terminals. Total synapsin protein expression in the PFC, hippocampus, and striatum was not altered by propofol. These results reveal that synapsin could be a novel substrate of propofol in the presynaptic neurotransmitter release machinery. Propofol possesses the ability to upregulate synapsin phosphorylation in broad mouse brain regions.


Assuntos
Propofol , Sinapsinas , Feminino , Camundongos , Masculino , Animais , Sinapsinas/metabolismo , Propofol/farmacologia , Fosforilação , Terminações Pré-Sinápticas/metabolismo , Encéfalo/metabolismo , Serina/metabolismo
2.
Int Rev Neurobiol ; 168: 349-366, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36868634

RESUMO

Metabotropic glutamate (mGlu) receptors are G protein-coupled receptors. Among eight mGlu subtypes (mGlu1-8), mGlu8 has drawn increasing attention. This subtype is localized to the presynaptic active zone of neurotransmitter release and is among the mGlu subtypes with high affinity for glutamate. As a Gi/o-coupled autoreceptor, mGlu8 inhibits glutamate release to maintain homeostasis of glutamatergic transmission. mGlu8 receptors are expressed in limbic brain regions and play a pivotal role in modulating motivation, emotion, cognition, and motor functions. Emerging evidence emphasizes the increasing clinical relevance of abnormal mGlu8 activity. Studies using mGlu8 selective agents and knockout mice have revealed the linkage of mGlu8 receptors to multiple neuropsychiatric and neurological disorders, including anxiety, epilepsy, Parkinson's disease, drug addiction, and chronic pain. Expression and function of mGlu8 receptors in some limbic structures undergo long-lasting adaptive changes in animal models of these disorders, which may contribute to the remodeling of glutamatergic transmission critical for the pathogenesis and symptomatology of brain illnesses. This review summarizes the current understanding of mGlu8 biology and the possible involvement of the receptor in several common psychiatric and neurological disorders.


Assuntos
Doenças do Sistema Nervoso , Doença de Parkinson , Receptores de Glutamato Metabotrópico , Animais , Camundongos , Glutamatos , Humanos
3.
Neurosci Lett ; 795: 137028, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36565803

RESUMO

Metabotropic glutamate (mGlu) receptors are involved in the experience-dependent neuroplasticity in the mesolimbic reward circuit. A Gαi/o-coupled mGlu2 subtype is distributed presynaptically in the striatum. These autoreceptors may have a significant influence over striatal neurons in their intracellular signaling pathways in response to a psychostimulant. Here we explored the effect of pharmacological potentiation of mGlu2 receptors on cocaine-stimulated phosphorylation (activation) of extracellular signal-regulated kinases (ERK) in the mouse striatum in vivo. We found that an mGlu2 selective positive allosteric modulator (PAM) LY487379 after a systemic injection did not alter basal phosphorylation of ERK1/2 or c-Jun N-terminal kinases in the striatum. However, pretreatment with LY487379 blocked the ERK1/2 phosphorylation induced by cocaine in the two subdivisions of the striatum, i.e., the caudate putamen and nucleus accumbens. LY487379 also blocked the cocaine-induced phosphorylation of Elk-1, a transcription factor downstream to the ERK pathway. Additionally, LY487379 reduced locomotor behavioral responses to cocaine. These results demonstrate that the mGlu2 PAM LY487379 possesses the ability to attenuate the activation of the ERK1/2 pathway in striatal neurons and reduce locomotor activity in response to cocaine in vivo.


Assuntos
Cocaína , Receptores de Glutamato Metabotrópico , Camundongos , Animais , Receptores de Glutamato Metabotrópico/metabolismo , Cocaína/farmacologia , Fosforilação , Sistema de Sinalização das MAP Quinases , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Ácido Glutâmico/metabolismo , Corpo Estriado/metabolismo , Proteínas de Ligação ao GTP/metabolismo
4.
Front Mol Neurosci ; 16: 1340725, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38273940

RESUMO

Five muscarinic acetylcholine (mACh) receptor subtypes are divided into two classes: the M1 class (M1, M3, and M5) and the M2 class (M2 and M4). The former is coupled to Gq proteins, while the latter is coupled to Gi/o proteins. Accumulating evidence indicates that mACh receptors play a significant role in the regulation of the Src family kinase (SFK), a subfamily of non-receptor tyrosine kinases. mACh receptors exert their roles in a subtype-dependent fashion and preferentially target Src and Fyn, two members of SFKs that are expressed in the brain and enriched at synaptic sites. While the M1 receptor positively modulates SFK activity, the M4 receptor inhibits it. By modulating SFKs, mACh receptors are actively involved in the regulation of expression and function of a variety of receptors, structural proteins, and signaling molecules. In particular, the M4 receptor and the dopamine D1 receptor are coexpressed in striatonigral projection neurons of the striatum. Gi/o-coupled M4 and Gq-coupled D1 receptors antagonistically regulate SFK activity, thereby forming a dynamic balance controlling glutamate receptor activity, excitability of neurons, and synaptic plasticity. In summary, mACh receptors play a crucial role in regulating SFK activity in heterologous cells and neurons.

5.
Front Cell Dev Biol ; 10: 1022544, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36407098

RESUMO

Group II metabotropic glutamate (mGlu) receptors (mGlu2/3) are Gαi/o-coupled receptors and are primarily located on presynaptic axonal terminals in the central nervous system. Like ionotropic glutamate receptors, group II mGlu receptors are subject to regulation by posttranslational phosphorylation. Pharmacological evidence suggests that several serine/threonine protein kinases possess the ability to regulate mGlu2/3 receptors. Detailed mapping of phosphorylation residues has revealed that protein kinase A (PKA) phosphorylates mGlu2/3 receptors at a specific serine site on their intracellular C-terminal tails in heterologous cells or neurons, which underlies physiological modulation of mGlu2/3 signaling. Casein kinases promote mGlu2 phosphorylation at a specific site. Tyrosine protein kinases also target group II receptors to induce robust phosphorylation. A protein phosphatase was found to specifically bind to mGlu3 receptors and dephosphorylate the receptor at a PKA-sensitive site. This review summarizes recent progress in research on group II receptor phosphorylation and the phosphorylation-dependent regulation of group II receptor functions. We further explore the potential linkage of mGlu2/3 phosphorylation to various neurological and neuropsychiatric disorders, and discuss future research aimed at analyzing novel biochemical and physiological properties of mGlu2/3 phosphorylation.

7.
IBRO Neurosci Rep ; 13: 22-30, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35711245

RESUMO

Major depressive disorder is a common and serious mood illness. The molecular mechanisms underlying the pathogenesis and symptomatology of depression are poorly understood at present. Multiple neurotransmitter systems are believed to be implicated in depression. Increasing evidence supports glutamatergic transmission as a critical element in depression and antidepressant activity. In this study, we investigated adaptive changes in expression of AMPA receptors in a key limbic reward structure, the striatum, in response to an anhedonic model of depression. Prolonged social isolation in adult rats caused anhedonic/depression- and anxiety-like behavior. In these depressed rats, surface levels of AMPA receptors, mainly GluA1 and GluA3 subunits, were reduced in the nucleus accumbens (NAc). Surface GluA1/A3 expression was also reduced in the caudate putamen (CPu) following chronic social isolation. No change was observed in expression of presynaptic synaptophysin, postsynaptic density-95, and dendritic microtubule-associated protein 2 in the striatum. Noticeably, chronic treatment with the metabotropic glutamate (mGlu) receptor 5 antagonist MTEP reversed the reduction of AMPA receptors in the NAc and CPu. MTEP also prevented depression- and anxiety-like behavior induced by social isolation. These data indicate that adulthood prolonged social isolation induces the adaptive downregulation of GluA1/A3-containing AMPA receptor expression in the limbic striatum. mGlu5 receptor activity is linked to this downregulation, and antagonism of mGlu5 receptors produces an antidepressant effect in this anhedonic model of depression.

8.
Addict Biol ; 27(2): e13127, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35229936

RESUMO

Activation of protein kinases after cocaine administration controls psychomotor behaviours by interacting with metabotropic receptors in the brain. This study identified how c-Jun N-terminal kinase (JNK) interacts with metabotropic glutamate receptor 5 (mGluR5) in vitro and in the caudate and putamen (CPu). The potential role of this interaction in the regulation of psychomotor behaviour was also evaluated after administration of cocaine. Active JNK phosphorylates a threonine residue at position 1055 in the carboxyl terminus (CT) of mGluR5 in vitro. The binding of active JNK to the D-motif within CT2 is necessary for that phosphorylation. Interaction of phosphorylated JNK and mGluR5 occurs in the CPu. Unilateral interference of the interaction decreases the repeated cocaine-induced increases in locomotor activity and conditioned place preference. These findings suggest that activation of JNK has the capability to interact with mGluR5 in the CPu. Phosphorylation of mGluR5 following the JNK-mGluR5 interaction may be responsible for the potentiation of behavioural sensitisation and cocaine-wanting behaviour in response to cocaine administration.


Assuntos
Cocaína , Receptor de Glutamato Metabotrópico 5 , Encéfalo/metabolismo , Cocaína/metabolismo , Cocaína/farmacologia , Fosforilação , Putamen/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo
9.
J Integr Neurosci ; 21(1): 25, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35164461

RESUMO

Major depressive disorder is a chronic psychiatric disease with a high prevalence. Brain mechanisms for depression at cellular and molecular levels are far from clear. Increasing evidence from clinical and preclinical studies reveals critical roles of the non-receptor tyrosine kinase (nRTK) superfamily in the pathophysiology, symptomatology, and therapy of depression. To date, several nRTK members from three nRTK subfamilies, i.e., the Src family kinase (SFK), the Janus tyrosine kinase (JAK) and the focal adhesion kinase (FAK) subfamilies, may connect to the intracellular, intranuclear, and synaptic signaling network linking chronic stress to depression- and anxiety-like behavior. These SFK/JAK/FAK nRTKs are abundantly expressed in the prefrontal cortex and hippocampus, two core limbic regions implicated in depression, and are enriched at synaptic sites. In various acute or chronic animal models of depression, the nRTKs were significantly altered (up- or downregulated) in their phosphorylation, expression, subcellular/subsynaptic distribution, and/or function. Stress that precipitates depressive behavior also influenced the interaction of nRTKs with other signaling molecules and downstream substrates, including ionotropic and metabotropic glutamate receptors. The commonly-used antidepressants showed the ability to alter nRTK activity. In sum, the limbic SFK/JAK/FAK nRTKs are sensitive to stress and undergo drastic adaptations in response to chronic depression. These long-lasting adaptations contribute to the remodeling of signaling network or synaptic plasticity critical for the vulnerability to depression and the therapeutic efficacy of antidepressants.


Assuntos
Depressão/tratamento farmacológico , Depressão/metabolismo , Proteínas Tirosina Quinases/efeitos dos fármacos , Proteínas Tirosina Quinases/metabolismo , Animais
10.
Int J Mol Sci ; 23(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35055030

RESUMO

Group I metabotropic glutamate (mGlu) receptors (mGlu1/5 subtypes) are G protein-coupled receptors and are broadly expressed in the mammalian brain. These receptors play key roles in the modulation of normal glutamatergic transmission and synaptic plasticity, and abnormal mGlu1/5 signaling is linked to the pathogenesis and symptomatology of various mental and neurological disorders. Group I mGlu receptors are noticeably regulated via a mechanism involving dynamic protein-protein interactions. Several synaptic protein kinases were recently found to directly bind to the intracellular domains of mGlu1/5 receptors and phosphorylate the receptors at distinct amino acid residues. A variety of scaffolding and adaptor proteins also interact with mGlu1/5. Constitutive or activity-dependent interactions between mGlu1/5 and their interacting partners modulate trafficking, anchoring, and expression of the receptors. The mGlu1/5-associated proteins also finetune the efficacy of mGlu1/5 postreceptor signaling and mGlu1/5-mediated synaptic plasticity. This review analyzes the data from recent studies and provides an update on the biochemical and physiological properties of a set of proteins or molecules that interact with and thus regulate mGlu1/5 receptors.


Assuntos
Proteínas de Transporte/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas , Proteína Quinase C/metabolismo , Transporte Proteico , Receptores de Glutamato Metabotrópico/química , Receptores de Glutamato Metabotrópico/genética , Transdução de Sinais , Relação Estrutura-Atividade
11.
J Mol Neurosci ; 72(4): 802-811, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35041190

RESUMO

Adenosine A2A receptors are Golf-coupled receptors and are predominantly expressed in the striatum of mammalian brains. As a mostly postsynaptic receptor, A2A receptors are implicated in the regulation of a variety of intracellular signaling pathways in striatopallidal output neurons and are linked to the pathogenesis of various neuropsychiatric and neurological disorders. This study investigated the possible role of A2A receptors in the modulation of the Src family kinase (SFK) in the adult rat striatum. In acutely prepared striatal slices, adding the A2A receptor agonist PSB-0777 induced a significant increase in phosphorylation of SFKs at a conserved autophosphorylation site (Y416) in the caudate putamen (CPu). This increase was also seen in the nucleus accumbens (NAc). Another A2A agonist CGS-21680 showed the similar ability to elevate SFK Y416 phosphorylation in the striatum. Treatment with the A2A receptor antagonist KW-6002 blocked the effect of PSB-0777 on SFK Y416 phosphorylation. In addition, PSB-0777 enhanced kinase activity of two key SFK members (Src and Fyn) immunoprecipitated from the striatum. These data demonstrate a positive linkage from A2A receptors to the SFK signaling pathway in striatal neurons. Activation of A2A receptors leads to the upregulation of phosphorylation of SFKs (Src and Fyn) at an activation-associated autophosphorylation site and kinase activity of these SFK members.


Assuntos
Corpo Estriado , Receptor A2A de Adenosina , Quinases da Família src , Adenosina/metabolismo , Animais , Corpo Estriado/metabolismo , Proteínas Proto-Oncogênicas c-fyn/genética , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Ratos , Ratos Wistar , Receptor A2A de Adenosina/metabolismo , Regulação para Cima , Quinases da Família src/metabolismo
12.
Brain Behav ; 11(8): e2254, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34156168

RESUMO

Adenosine A1 receptors are widely expressed in the mammalian brain. Through interacting with Gαi/o -coupled A1 receptors, the neuromodulator adenosine modulates a variety of cellular and synaptic activities. To determine the linkage from A1 receptors to a key intracellular signaling pathway, we investigated the impact of blocking A1 receptors on a subfamily of nonreceptor tyrosine kinases, that is, the Src family kinase (SFK), in different rat brain regions in vivo. We found that pharmacological blockade of A1 receptors by a single systemic injection of the A1 selective antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) induced an increase in autophosphorylation of SFKs at a consensus activation site, tyrosine 416 (Y416), in the two subdivisions of the striatum, the caudate putamen and nucleus accumbens. DPCPX also increased SFK Y416 phosphorylation in the medial prefrontal cortex (mPFC) but not the hippocampus. The DPCPX-induced Y416 phosphorylation was time dependent and reversible. In immunopurified Fyn and Src proteins from the striatum, DPCPX elevated SFK Y416 phosphorylation and tyrosine kinase activity in Fyn but not in Src proteins. In the mPFC, DPCPX enhanced Y416 phosphorylation and tyrosine kinase activity in both Fyn and Src immunoprecipitates. DPCPX had no effect on expression of total Fyn and Src proteins in the striatum, mPFC, and hippocampus. These results demonstrate a tonic inhibitory linkage from A1 receptors to SFKs in the striatum and mPFC. Blocking this inhibitory tone could significantly enhance constitutive SFK Y416 phosphorylation in the rat brain in a region- and time-dependent manner.


Assuntos
Corpo Estriado , Receptor A1 de Adenosina/metabolismo , Quinases da Família src , Adenosina , Animais , Corpo Estriado/metabolismo , Prosencéfalo/metabolismo , Ratos , Ratos Wistar , Quinases da Família src/metabolismo
13.
Neuroscience ; 433: 11-20, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32145272

RESUMO

The Src family kinase (SFK) is a subfamily of non-receptor tyrosine kinases. The SFK member Fyn is enriched at synaptic sites in the limbic reward circuit and plays a pivotal role in the regulation of glutamate receptors. In this study, we investigated changes in phosphorylation and function of the two key SFK members (Fyn and Src) and SFK interactions with a metabotropic glutamate (mGlu) receptor in the limbic striatum of adult rats in response to chronic passive stress, i.e., prolonged social isolation which is a pre-validated animal paradigm modeling depression in adulthood. In rats that showed typical anhedonic/depression-like behavior after chronic social isolation, phosphorylation of SFKs at a conserved and activation-associated autophosphorylation site (Y416) was not altered in the two subdivisions of the striatum, the nucleus accumbens and caudate putamen. The total level of phosphorylation and kinase activity of individual Fyn and Src immunopurified from the striatum also remained stable after social isolation. Noticeably, Fyn and Src were found to interact with a Gαq-coupled mGlu5 receptor in striatal neurons. The interaction of Fyn with mGlu5 receptors was selectively elevated in socially isolated rats. Moreover, social isolation induced an increase in surface expression of striatal mGlu5 receptors, which was reduced by an SFK inhibitor. These results indicate that Fyn interacts with mGlu5 receptors in striatal neurons. Adulthood social isolation in rats enhances the Fyn-mGlu5 interaction, which appears to be critical for the upregulation of surface mGlu5 receptor expression in striatal neurons.


Assuntos
Corpo Estriado , Depressão , Animais , Corpo Estriado/metabolismo , Neurônios/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Ratos , Ratos Wistar , Quinases da Família src/metabolismo
14.
Brain Behav ; 10(3): e01543, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31994358

RESUMO

OBJECTIVE: The adenosine A1 receptor is a Gαi/o protein-coupled receptor and inhibits upon activation cAMP formation and protein kinase A (PKA) activity. As a widely expressed receptor in the mammalian brain, A1 receptors are implicated in the modulation of a variety of neuronal and synaptic activities. In this study, we investigated the role of A1 receptors in the regulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in the adult rat brain in vivo. METHODS: Adult male Wistar rats were used in this study. After a systemic injection of the A1 antagonist DPCPX, rats were sacrificed and several forebrain regions were collected for assessing changes in phosphorylation of AMPA receptors using Western blots. RESULTS: A systemic injection of the A1 antagonist DPCPX induced an increase in phosphorylation of AMPA receptor GluA1 subunits at a PKA-dependent site, serine 845 (S845), in the two subdivisions of the striatum, the caudate putamen, and nucleus accumbens. DPCPX also increased S845 phosphorylation in the medial prefrontal cortex (mPFC) and hippocampus. The DPCPX-stimulated S845 phosphorylation was a transient and reversible event. Blockade of Gαs/olf -coupled dopamine D1 receptors with a D1 antagonist SCH23390 abolished the responses of S845 phosphorylation to DPCPX in the striatum, mPFC, and hippocampus. DPCPX had no significant impact on phosphorylation of GluA1 at serine 831 and on expression of total GluA1 proteins in all forebrain regions surveyed. CONCLUSION: These data demonstrate that adenosine A1 receptors maintain an inhibitory tone on GluA1 S845 phosphorylation under normal conditions. Blocking this inhibitory tone leads to the upregulation of GluA1 S845 phosphorylation in the striatum, mPFC, and hippocampus via a D1 -dependent manner.


Assuntos
Antagonistas do Receptor A1 de Adenosina/farmacologia , Prosencéfalo/efeitos dos fármacos , Receptores de AMPA/metabolismo , Regulação para Cima/efeitos dos fármacos , Animais , Benzazepinas/farmacologia , Antagonistas de Dopamina/farmacologia , Masculino , Fosforilação/efeitos dos fármacos , Prosencéfalo/metabolismo , Ratos , Ratos Wistar , Xantinas/farmacologia
15.
Neurosci Lett ; 699: 47-53, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30703410

RESUMO

The extracellular signal-regulated kinase (ERK) is enriched in the central nervous system, including the dopamine responsive regions such as the striatum and medial prefrontal cortex (mPFC). The kinase is sensitive to changing cellular and synaptic input and is implicated in the regulation of synaptic transmission and plasticity. In this study, the role of a Gαi/o protein-coupled adenosine A1 receptor in the regulation of ERK1/2 was investigated in the rat brain in vivo. We found that an A1 agonist CPA after an intraperitoneal injection reduced ERK1/2 phosphorylation in the nucleus accumbens (NAc) and mPFC. In contrast, a single dose of an A1 antagonist DPCPX induced a rapid and transient increase in ERK1/2 phosphorylation in the caudate putamen (CPu), NAc, and mPFC. Pretreatment with a dopamine D1 receptor antagonist SCH23390 abolished the DPCPX-induced ERK1/2 phosphorylation in the striatum and mPFC. Coadministration of DPCPX and a D1 agonist SKF81297 at a low dose induced a greater elevation of ERK1/2 phosphorylation. Activation or blockade of A1 receptors had no effect on total ERK1/2 expression in the striatum and mPFC. These results reveal an existence of an inhibitory linkage from adenosine A1 receptors to ERK1/2 in striatal and mPFC neurons. This inhibitory linkage seems to form a dynamic balance with positive dopamine D1 receptor signaling to control the ERK1/2 pathway.


Assuntos
Agonistas do Receptor A1 de Adenosina/farmacologia , Antagonistas do Receptor A1 de Adenosina/farmacologia , Corpo Estriado/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Receptor A1 de Adenosina/metabolismo , Adenosina/análogos & derivados , Adenosina/farmacologia , Animais , Benzazepinas/farmacologia , Corpo Estriado/enzimologia , Sinergismo Farmacológico , Masculino , Núcleo Accumbens/metabolismo , Fosforilação/efeitos dos fármacos , Córtex Pré-Frontal/enzimologia , Ratos , Xantinas/antagonistas & inibidores , Xantinas/farmacologia
16.
Neuroscience ; 400: 110-119, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30599269

RESUMO

The medial prefrontal cortex (mPFC) is implicated in the rewarding effect of psychostimulants, although molecular mechanisms underlying the rewarding properties of stimulants in this region are poorly understood. Group I metabotropic glutamate (mGlu) receptors (mGlu1/5 subtypes) are believed to be critical in this event. We thus in this study investigated changes in mGlu1/5 receptor expression and function in the rat mPFC in response to conditioned place preference (CPP) induced by amphetamine. Repeated amphetamine administration (2.5 mg/kg, once daily on alternate days for 10 days) induced reliable CPP. In the mPFC, surface expression of mGlu5 receptors was elevated in rats after amphetamine conditioning. mGlu5 receptors were also increased at synaptic and extrasynaptic sites in amphetamine-conditioned rats. Expression of mGlu1 receptors was stable in surface and synaptic compartments, while it was elevated in the extrasynaptic location. In mPFC neurons, the mGlu1/5 agonist-stimulated phosphoinositide signaling pathway was upregulated in its efficacy following amphetamine conditioning. The mGlu1/5 agonist-stimulated Src kinase phosphorylation was also augmented in rats treated with amphetamine. These results demonstrate the sensitivity of mPFC mGlu1/5 receptors to amphetamine-induced CPP. Amphetamine conditioning results in the upregulation of mGlu1/5 receptor expression at subcellular and/or subsynaptic levels and mGlu1/5-mediated postreceptor signaling in mPFC neurons.


Assuntos
Anfetamina/administração & dosagem , Estimulantes do Sistema Nervoso Central/administração & dosagem , Condicionamento Clássico/fisiologia , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Condicionamento Clássico/efeitos dos fármacos , Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Neurônios/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Ratos Wistar , Transdução de Sinais , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Quinases da Família src/metabolismo
17.
Eur J Pharmacol ; 843: 45-54, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30419241

RESUMO

The psychostimulant amphetamine (AMPH) has an impact on a variety of cellular activities in striatal neurons, although underlying signaling mechanisms are incompletely understood. The Src family kinase (SFK) is among key signaling molecules enriched in striatal neurons and is involved in the regulation of a set of discrete downstream targets. Given the likelihood that AMPH may regulate SFKs, we investigated and characterized the effect of AMPH on SFK phosphorylation and enzymatic activity in rat striatal neurons in vivo. We found that AMPH elevated SFK Y416 phosphorylation in striatal slices and the adult rat striatum. This elevation was concentration- and time-dependent and occurred in all subdivisions of the striatum, including the caudate putamen and nucleus accumbens (core and shell). The dopamine D1 receptor antagonist SCH23390 blocked the effect of AMPH. Between Fyn and Src, AMPH elevated phosphorylation of immunoprecipitated Fyn but not Src and increased Fyn kinase activity in the striatum. In parallel with SFKs, striatal ERK phosphorylation was increased by AMPH. This increase in ERK phosphorylation was reduced by the SFK inhibitor PP2. These results demonstrate that AMPH is able to activate SFKs (mainly Fyn) in striatal neurons via a D1 receptor-dependent mechanism. Activated SFKs participate in processing the concomitant ERK response to AMPH.


Assuntos
Anfetamina/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Corpo Estriado/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Animais , Benzazepinas/farmacologia , Corpo Estriado/metabolismo , Antagonistas de Dopamina/farmacologia , Masculino , Fosforilação/efeitos dos fármacos , Ratos Wistar , Receptores de Dopamina D1/antagonistas & inibidores
18.
J Mol Neurosci ; 66(4): 629-638, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30430306

RESUMO

The metabotropic glutamate (mGlu) receptor 5 is a G protein-coupled receptor and is densely expressed in the mammalian brain. Like other glutamate receptors, mGlu5 receptors are tightly regulated by posttranslational modifications such as phosphorylation, although underlying mechanisms are incompletely investigated. In this study, we investigated the role of a prime kinase, extracellular signal-regulated kinase 1 (ERK1), in the phosphorylation and regulation of mGlu5 receptors in vitro and in striatal neurons. We found that recombinant ERK1 proteins directly bound to the C-terminal tail (CT) of mGlu5 receptors in vitro. Endogenous ERK1 also interacted with mGlu5 receptor proteins in adult rat striatal neurons in vivo. The kinase showed the ability to phosphorylate mGlu5 receptors. A serine residue in the distal region of mGlu5 CT was found to be a primary phosphorylation site sensitive to ERK1. In functional studies, we found that pharmacological inhibition of ERK with an inhibitor U0126 reduced the efficacy of mGlu5 receptors in stimulating production of cytoplasmic inositol-1,4,5-triphosphate, a major downstream conventional signaling event, in striatal neurons under normal conditions. These results identify mGlu5 as a new biochemical substrate of ERK1. The kinase can interact with and phosphorylate an intracellular domain of mGlu5 receptors in striatal neurons and thereby control its signaling efficacy.


Assuntos
Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neurônios/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Animais , Sítios de Ligação , Butadienos/farmacologia , Corpo Estriado/citologia , Corpo Estriado/metabolismo , Masculino , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/genética , Nitrilas/farmacologia , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Wistar , Receptor de Glutamato Metabotrópico 5/química
19.
Mol Ther Nucleic Acids ; 12: 578-590, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30195794

RESUMO

Doxorubicin is a widely used anthracycline-based anti-tumor agent for both solid and liquid tumors. Mounting evidence has demonstrated that microRNAs (miRNAs) are involved in chemoresistance and tumorigenesis. However, the roles of microRNA-501-5p (miR-501) in doxorubicin resistance and gastric cancer cell proliferation and invasion are still not fully understood. In this study, we identified that BLID (BH3-like motif-containing protein, cell death inducer) was directly regulated by miR-501 at the post-transcriptional level in multiple gastric cancer cell lines. Endogenous miR-501 was higher, whereas BLID was lower, in doxorubicin-resistant gastric cancer SGC7901/ADR cells compared with their parental SGC7901 cells. miR-501 suppressed gastric cancer cell apoptosis, induced resistance to doxorubicin, and enhanced cell proliferation, migration, and invasion. Subcutaneous injection of miR-501 lentivirus-infected SGC7901 cells resulted in rapid growth of xenograft tumors and resistance to doxorubicin treatment, unlike injection of negative miRNA lentivirus-infected SGC7901 cells. This is achieved at least partially by directly targeting BLID and subsequent inactivation of caspase-9 and caspase-3 and phosphorylation of Akt. Taken together, miR-501 induces doxorubicin resistance and enhances the tumorigenesis of gastric cancer cells by suppressing BLID. miR-501 might be a potential target for doxorubicin resistance and gastric cancer therapy.

20.
Brain Res ; 1688: 103-112, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29577888

RESUMO

The mitogen-activated protein kinase (MAPK), especially its extracellular signal-regulated kinase (ERK) subfamily, is a group of kinases enriched in the mammalian brain. While ERK is central to cell signaling and neural activities, the regulation of ERK by transmitters is poorly understood. In this study, the role of acetylcholine in the regulation of ERK was investigated in adult rat striatum in vivo. We focused on muscarinic M1 and M4 receptors, two principal muscarinic acetylcholine (mACh) receptor subtypes in the striatum. A systemic injection of the M1-preferring antagonist telenzepine did not alter ERK phosphorylation in the two subdivisions of the striatum, the caudate putamen and nucleus accumbens. Similarly, telenzepine did not affect ERK phosphorylation in the medial prefrontal cortex (mPFC), hippocampus, and cerebellum. Moreover, telenzepine had no effect on the ERK phosphorylation induced by dopamine stimulation with the psychostimulant amphetamine. In contrast to telenzepine, the M4-preferring antagonist tropicamide consistently increased ERK phosphorylation in the striatum and mPFC. This increase was rapid and transient. Tropicamide and amphetamine when coadministered at subthreshold doses induced a significant increase in ERK phosphorylation. These results demonstrate that mACh receptors exert a subtype-specific modulation of ERK in striatal and mPFC neurons. While the M1 receptor antagonist has no effect on ERK phosphorylation, M4 receptors inhibit constitutive and dopamine-stimulated ERK phosphorylation in these dopamine-innervated brain regions.


Assuntos
Anfetamina/administração & dosagem , Encéfalo/metabolismo , Estimulantes do Sistema Nervoso Central/administração & dosagem , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Receptor Muscarínico M4/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Dopamina/administração & dosagem , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Antagonistas Muscarínicos/administração & dosagem , Fosforilação , Pirenzepina/administração & dosagem , Pirenzepina/análogos & derivados , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Ratos Wistar , Receptor Muscarínico M1/metabolismo , Tropicamida/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA