Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 12(5)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35629888

RESUMO

Rice (Oryza sativa L.) is one of the most globally important crops, nutritionally and economically. Therefore, analyzing the genetic basis of its nutritional quality is a paramount prerequisite for cultivating new varieties with increased nutritional health. To systematically compare the nutritional quality differences between landraces and cultivated rice, and to mine key genes that determine the specific nutritional traits of landraces, a seed metabolome database of 985 nutritional metabolites covering amino acids, flavonoids, anthocyanins, and vitamins by a widely targeted metabolomic approach with 114 rice varieties (35 landraces and 79 cultivars) was established. To further reveal the molecular mechanism of the metabolic differences in landrace and cultivated rice seeds, four cultivars and six landrace seeds were selected for transcriptome and metabolome analysis during germination, respectively. The integrated analysis compared the metabolic profiles and transcriptomes of different types of rice, identifying 358 differentially accumulated metabolites (DAMs) and 1982 differentially expressed genes (DEGs), establishing a metabolite-gene correlation network. A PCA revealed anthocyanins, flavonoids, and lipids as the central differential nutritional metabolites between landraces and cultivated rice. The metabolite-gene correlation network was used to screen out 20 candidate genes postulated to be involved in the structural modification of anthocyanins. Five glycosyltransferases were verified to catalyze the glycosylation of anthocyanins by in vitro enzyme activity experiments. At the same time, the different mechanisms of the anthocyanin synthesis pathway and structural diversity in landrace and cultivated rice were systematically analyzed, providing new insights for the improvement and utilization of the nutritional quality of rice landrace varieties.

2.
Front Plant Sci ; 13: 860577, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463452

RESUMO

Steroidal glycoalkaloids (SGAs) are cholesterol-derived molecules that contribute to the pathogen defense in tomato but are toxic and considered to be antinutritional compounds to humans. APETALA2/Ethylene Responsive Factor (AP2/ERF) family transcription factors (TFs) play an indispensable role in various biological processes, such as plant growth and development, fruit ripening, biotic and abiotic stresses responses, and SGA biosynthesis. In this study, we identified 176 AP2/ERF genes that were domesticated or improved SlAP2/ERF in the tomato variome (Solanum lycopersicum) within either domestication or improvement sweeps, respectively. According to the RNA-sequencing data, 93 of the ERF genes with high transcriptional level (Transcripts Per Million, TPM > 1) belong to six clusters. Weighted gene co-expression network analysis (WGCNA) and metabolite-based genome-wide association study (mGWAS) analyses revealed that the expression level of the Solyc04g071770 (SlERF.D6) gene in the cluster six gradually increased as the fruit matured. Transient transformation verified that the overexpression of SlERF.D6 significantly promoted fruit ripening and regulated the expression of multiple genes in the SGA synthesis pathway, thereby affecting the SGA content of the fruit. Virus-induced gene silencing (VIGS) showed that the silencing of SlERF.D6 delayed fruit ripening and influenced the content of SGAs. Our data provide new insights into AP2/ERF TFs in tomato, offer a candidate TF for fruit development and steroidal glycoalkaloids, and provide new resources for tomato breeding and improvement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA