Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(21): 10022-10030, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38748907

RESUMO

In this work, phase-pure Mg1.8(Ni1-xCox)0.2Al4Si5O18 (0 ≤ x ≤ 1) ceramics were synthesized by a high-temperature solid-state method. On the basis of Rietveld refinement data of X-ray powder diffraction and Phillips-Vechten-Levine theory, the atomic ionicity, lattice energy, and bond energy of the compound were calculated to explore their influence on the microwave dielectric properties of ceramics. The Mg1.8Ni0.1Co0.1Al4Si5O18 (x = 0.5) ceramic exhibited the best microwave dielectric properties: εr = 4.44, Qf = 73 539 GHz@13 GHz, and τf = -23.9 ppm/°C. (Ni1-xCox)2+ complex ionic doping, compared with only Ni2+ or Co2+, is beneficial for improving the symmetry of [Si4Al2O18] hexagonal rings and reducing distortion. Subsequently, 8 wt % TiO2 was added to Mg1.8Ni0.1Co0.1Al4Si5O18, resulting in a near-zero τf and high Qf values for the composite ceramic, with εr = 5.22, Qf = 58 449 GHz@13 GHz, and τf = -2.06 ppm/°C. Finally, a 5G millimeter-wave antenna with a central operating frequency of 25.52 GHz was designed and fabricated using the Mg1.8Ni0.1Co0.1Al4Si5O18-8 wt % TiO2 ceramics. Operating in the 24.7-26.0 GHz range, it demonstrated favorable radiation characteristics with a simulated efficiency of 85.2% and a gain of 4.58 dBi. The antenna's performance confirms the high potential of the cordierite composite for application in 5G communication systems.

2.
Adv Mater ; 36(14): e2306345, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38146105

RESUMO

Covalent organic frameworks (COFs) are crystalline materials with intrinsic porosity that offer a wide range of potential applications spanning diverse fields. Yet, the main goal in the COF research area is to achieve the most stable thermodynamic product while simultaneously targeting the desired size and structure crucial for enabling specific functions. While significant progress is made in the synthesis and processing of 2D COFs, the development of processable 3D COF nanocrystals remains challenging. Here, a water-based nanoreactor technology for producing processable sub-40 nm 3D COF nanoparticles at ambient conditions is presented. Significantly, this technology not only improves the processability of the synthesized 3D COF, but also unveils exciting possibilities for their utilization in previously unexplored domains, such as nano/microrobotics and biomedicine, which are limited by larger crystallites.

3.
Polymers (Basel) ; 15(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37242890

RESUMO

Epoxy resin (EP), as a kind of dielectric polymer, exhibits the advantages of low-curing shrinkage, high-insulating properties, and good thermal/chemical stability, which is widely used in electronic and electrical industry. However, the complicated preparation process of EP has limited their practical applications for energy storage. In this manuscript, bisphenol F epoxy resin (EPF) was successfully fabricated into polymer films with a thickness of 10~15 µm by a facile hot-pressing method. It was found that the curing degree of EPF was significantly affected by changing the ratio of EP monomer/curing agent, which led to the improvement in breakdown strength and energy storage performance. In particular, a high discharged energy density (Ud) of 6.5 J·cm-3 and efficiency (η) of 86% under an electric field of 600 MV·m-1 were obtained for the EPF film with an EP monomer/curing agent ratio of 1:1.5 by hot pressing at 130 °C, which indicates that the hot-pressing method could be facilely employed to produce high-quality EP films with excellent energy storage performance for pulse power capacitors.

4.
Environ Pollut ; 219: 228-234, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27814539

RESUMO

To explore the mechanisms and influence factors on the production of 2,4,6-trichloroanisole (2,4,6-TCA) in surface waters, the 2,4,6-TCA formation potential (FP) test was conducted by incubating the real lake water with the addition of 2,4,6-trichlorophenol (2,4,6-TCP) precursor. Besides bacteria and fungi, two common cyanobacteria and algae species, i.e., Chlorella vulgaris and Anabaena flos-aquae, have been proved to have strong capabilities to produce 2,4,6-TCA, which may contribute the high 2,4,6-TCA FP (152.2 ng/L) of lake water. The microbial O-methylation of 2,4,6-TCP precursor is catalyzed by chlorophenol O-methyltransferases (CPOMTs), and their characteristics were identified by adding inductive methyl donors or excluding microorganisms via ultrafiltration. The results indicated both S-adenosyl methionine (SAM) dependent and non-SAM dependent CPOMTs played important roles; extracellular CPOMTs also participated in the biosynthesis of 2,4,6-TCA. Moreover, investigating the effects of various environmental factors revealed initial 2,4,6-TCP processor concentration, temperature, pH and some divalent metal cations (i.e., Mn2+, Mg2+ and Zn2+) had obvious effects on the production of 2,4,6-TCA.


Assuntos
Anisóis/metabolismo , Clorofenóis/metabolismo , Lagos/química , Lagos/microbiologia , China , Chlorella vulgaris/efeitos dos fármacos , Chlorella vulgaris/metabolismo , Cianobactérias/efeitos dos fármacos , Cianobactérias/enzimologia , Cianobactérias/metabolismo , Fungos/efeitos dos fármacos , Fungos/enzimologia , Fungos/metabolismo , Concentração de Íons de Hidrogênio , Metais/farmacologia , Metilação/efeitos dos fármacos , Metiltransferases/metabolismo , Temperatura
5.
Chemosphere ; 163: 366-372, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27561731

RESUMO

Chloroanisoles are often reported as off-flavor compounds which produce an earthy and musty flavors and odors in drinking water. To improve understanding and ultimately minimize the formation of 2,4-dichloroanisole (2,4-DCA), 2,6-dichloroanisole (2,6-DCA) and 2,4,6-trichloroanisole (2,4,6-TCA), which have low odor threshold concentrations (OTC: 0.03-4 ng L(-1)), a kinetic database for the chlorination of anisole was established by kinetic measurements. The results showed that HOCl reacted with anisole in acidic solution, with the hydrogen ion as an important catalyst. Quantification of product distribution of the produced chloroanisoles demonstrated that a chlorine attack in the para-position was favored over the ortho-position. A kinetic model was formulated, which permitted investigation of the relative importance of the chlorine dose and other water quality parameters including the concentrations of anisole and several metal ions, as well as temperature, on the product distribution of chloroanisoles. In general, high chlorine doses led to low concentrations of intermediates. The presence of ions such as Fe(3+) and Al(3+) facilitated the formation of chloroanisoles, but Zn(2+) and Mn(2+) did not. The kinetic model can be applied to optimize water chlorination and minimize earthy and musty odors.


Assuntos
Anisóis/química , Ácido Hipocloroso/química , Modelos Químicos , Poluentes Químicos da Água/química , Halogenação , Cinética , Metais/química , Odorantes , Paladar , Purificação da Água
6.
Nano Lett ; 16(2): 1156-60, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26799861

RESUMO

Sublimation is an important endothermic phase transition in which the atoms break away from their neighbors in the crystal lattice and are removed into the gas phase. Such debonding process may be significantly influenced by dislocations, the crystal defect that changes the bonding environment of local atoms. By performing systematic defects characterization and in situ transmission electron microscopy (TEM) tests on a core--shell MgO-Mg system, which enables us to "modulate" the internal dislocation density, we investigated the role of dislocations on materials' sublimation with particular focus on the sublimation kinetics and mechanism. It was observed that the sublimation rate increases significantly with dislocation density. As the density of screw dislocations is high, the intersection of screw dislocation spirals creates a large number of monatomic ledges, resulting in a "liquid-like" motion of solid-gas interface, which significantly deviates from the theoretically predicted sublimation plane. Our calculation based on density functional theory demonstrated that the remarkable change of sublimation rate with dislocation density is due to the dramatic reduction in binding energy of the monatomic ledges. This study provides direct observation to improve our understanding on this fundamental phase transition as well as to shed light on tuning materials' sublimation by "engineering" dislocation density in applications.

7.
Nanotechnology ; 26(12): 125404, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25742426

RESUMO

Transition metal oxides have attracted great interest as alternative anode materials for rechargeable lithium-ion batteries. Among them, ruthenium dioxide is considered to be a prototype material that reacts with the Li ions in the conversion type. In situ transmission electron microscopy reveals a two-step process during the initial lithiation of the RuO2 nanowire anode at atomic resolution. The first step is characterized by the formation of the intermediate phase LixRuO2 due to the Li-ion intercalation. The following step is manifested by the solid-state amorphization reaction driven by advancing the reaction front. The crystalline/amorphous interface is consisted of {011} atomic terraces, revealing the orientation-dependent mobility. In the crystalline matrix, lattice disturbance and dislocation are identified to be two major stress-induced distortions. The latter can be effective diffusion channels, facilitating transportation of the Li ions inside the bulk RuO2 crystal and further resulting in non-uniform Li-ion distribution. It is expected that the local enrichment of the Li ions may account for the homogeneous nucleation of dislocations in the bulk RuO2 crystal and the special island-like structures. These results elucidate the structural evolution and the phase transformation during electrochemical cycling, which sheds light on engineering RuO2 anode materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA