Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ying Yong Sheng Tai Xue Bao ; 29(6): 1753-1758, 2018 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-29974682

RESUMO

Soil microbial residues are important components of soil stable carbon (C) pools. How N-fixing tree species influence microbial residues in soil aggregates in larch plantations is still unclear. To determine the effects of N-fixing tree species on the distribution of microbial residues in different aggregates, we compared the distribution of amino sugars, biomarker of microbial residues, among aggregates in a pure larch (Larix kaempferi) plantation and a mixed plantation of larch (Larix kaempferi) and alder (Alnus sibirica) in eastern Liaoning Province. The results showed that alder did not affect the distribution of amino sugars, but significantly increased amino sugars content in soil aggregates. The total amino sugars in different soil aggregates were enriched by 130%-170% in the mixed larch plantation compared with those in pure larch plantation. The contributions of glucosamine, galactosamine and muramic acid to the increases of total amino sugars caused by alder introduction were 66.5%-66.9%, 30.0%-30.6% and 2.5%-3.2%, respectively. Alder introduction significantly accelerated the glucosamine/muramic acid ratios in >2000 µm and <250 µm aggregates, but not in 250-2000 µm aggregates. Moreover, alder introduction increased the microbial contribution to soil organic C in all aggregates, but did not influence this contribution among aggregates, indicating that the effects of alder introduction on microbial contribution to aggregates were homogeneous.


Assuntos
Alnus/fisiologia , Amino Açúcares/metabolismo , Amino Açúcares/fisiologia , Fixação de Nitrogênio , Microbiologia do Solo , Carbono , China , Larix , Solo , Açúcares , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA