Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Molecules ; 29(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38611779

RESUMO

Drug discovery involves a crucial step of optimizing molecules with the desired structural groups. In the domain of computer-aided drug discovery, deep learning has emerged as a prominent technique in molecular modeling. Deep generative models, based on deep learning, play a crucial role in generating novel molecules when optimizing molecules. However, many existing molecular generative models have limitations as they solely process input information in a forward way. To overcome this limitation, we propose an improved generative model called BD-CycleGAN, which incorporates BiLSTM (bidirectional long short-term memory) and Mol-CycleGAN (molecular cycle generative adversarial network) to preserve the information of molecular input. To evaluate the proposed model, we assess its performance by analyzing the structural distribution and evaluation matrices of generated molecules in the process of structural transformation. The results demonstrate that the BD-CycleGAN model achieves a higher success rate and exhibits increased diversity in molecular generation. Furthermore, we demonstrate its application in molecular docking, where it successfully increases the docking score for the generated molecules. The proposed BD-CycleGAN architecture harnesses the power of deep learning to facilitate the generation of molecules with desired structural features, thus offering promising advancements in the field of drug discovery processes.


Assuntos
Fármacos Anti-HIV , Simulação de Acoplamento Molecular , Descoberta de Drogas , Hidrolases , Memória de Longo Prazo
2.
Comput Struct Biotechnol J ; 23: 1666-1679, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38680871

RESUMO

Accurately predicting molecular properties is a challenging but essential task in drug discovery. Recently, many mono-modal deep learning methods have been successfully applied to molecular property prediction. However, mono-modal learning is inherently limited as it relies solely on a single modality of molecular representation, which restricts a comprehensive understanding of drug molecules. To overcome the limitations, we propose a multimodal fused deep learning (MMFDL) model to leverage information from different molecular representations. Specifically, we construct a triple-modal learning model by employing Transformer-Encoder, Bidirectional Gated Recurrent Unit (BiGRU), and graph convolutional network (GCN) to process three modalities of information from chemical language and molecular graph: SMILES-encoded vectors, ECFP fingerprints, and molecular graphs, respectively. We evaluate the proposed triple-modal model using five fusion approaches on six molecule datasets, including Delaney, Llinas2020, Lipophilicity, SAMPL, BACE, and pKa from DataWarrior. The results show that the MMFDL model achieves the highest Pearson coefficients, and stable distribution of Pearson coefficients in the random splitting test, outperforming mono-modal models in accuracy and reliability. Furthermore, we validate the generalization ability of our model in the prediction of binding constants for protein-ligand complex molecules, and assess the resilience capability against noise. Through analysis of feature distributions in chemical space and the assigned contribution of each modal model, we demonstrate that the MMFDL model shows the ability to acquire complementary information by using proper models and suitable fusion approaches. By leveraging diverse sources of bioinformatics information, multimodal deep learning models hold the potential for successful drug discovery.

3.
Diagnostics (Basel) ; 12(10)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36292167

RESUMO

Nasopharyngeal carcinoma (NPC) is one of the most common head and neck cancers. Early diagnosis plays a critical role in the treatment of NPC. To aid diagnosis, deep learning methods can provide interpretable clues for identifying NPC from magnetic resonance images (MRI). To identify the optimal models, we compared the discrimination performance of hierarchical and simple layered convolutional neural networks (CNN). Retrospectively, we collected the MRI images of patients and manually built the tailored NPC image dataset. We examined the performance of the representative CNN models including shallow CNN, ResNet50, ResNet101, and EfficientNet-B7. By fine-tuning, shallow CNN, ResNet50, ResNet101, and EfficientNet-B7 achieved the precision of 72.2%, 94.4%, 92.6%, and 88.4%, displaying the superiority of deep hierarchical neural networks. Among the examined models, ResNet50 with pre-trained weights demonstrated the best classification performance over other types of CNN with accuracy, precision, and an F1-score of 0.93, 0.94, and 0.93, respectively. The fine-tuned ResNet50 achieved the highest prediction performance and can be used as a potential tool for aiding the diagnosis of NPC tumors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA