Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(20): 26153-26166, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38718343

RESUMO

Photothermal conversion materials are critical in the development of solar-driven interfacial evaporation techniques; however, achieving a high energy conversion efficiency remains challenging owing to the high cost and instability of light-absorbing materials, in addition to the difficulties of simultaneously improving light absorption while suppressing heat loss. A black silicon (Si) powder with a porous structure was prepared by chemical etching of a low-cost commercial micron-sized Al-Si alloy, and a flexible Janus black Si photothermal conversion membrane was constructed. The partially broken spherical particles and porous structure obtained after etching enhanced the refraction of light from the Si powder, imparting the prepared membrane with an average light absorption rate of 95.95% over the solar spectrum. Evaporation from the membrane increased the intermediate water content and reduced the equivalent evaporation enthalpy. The thermal conduction loss was inhibited through a one-dimensional water transport structure, and the membrane achieved a water evaporation rate of 2.17 kg m-2 h-1 and a photothermal efficiency of 94.95% under 1 sun illumination. Benefiting from the broadband absorption and high photothermal efficiency of black Si powder, surface modification of hydrophobic polydimethylsiloxane, and directional salt-out structure design, the evaporation rate of the Janus black Si membrane-based system in a 10% NaCl solution was maintained >2.10 kg m-2 h-1 after 7 days of continuous evaporation cycles. The removal rate of metal ions from simulated seawater and from practical wastewater containing complex heavy metals reached >99.9%, indicating the promising potential of black Si membrane for application in solar-driven interfacial water purification.

2.
Food Chem ; 450: 139354, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38636385

RESUMO

The interaction between gut microbiota and muscles through the gut-muscle axis has received increasing attention. This study attempted to address existing research gaps by investigating the effects of gut microbiota on meat flavor. Specifically, lactic acid bacteria were administered to ducks, and the results of e-nose and e-tongue showed significantly enhanced meat flavor in the treatment group. Further analyses using GC-MS revealed an increase in 6 characteristic volatile flavor compounds, including pentanal, hexanal, heptanal, 1-octen-3-ol, 2,3-octanedione, and 2-pentylfuran. Linoleic acid was identified as the key fatty acid that influences meat flavor. Metagenomic and transcriptomic results further confirmed that cecal microbiota affects the duck meat flavor by regulating the metabolic pathways of fatty acids and amino acids, especially ACACB was related to fatty acid biosynthesis and ACAT2, ALDH1A1 with fatty acid degradation. This study sheds light on a novel approach to improving the flavor of animal-derived food.


Assuntos
Patos , Microbioma Gastrointestinal , Lactobacillales , Carne , Paladar , Animais , Patos/microbiologia , Carne/análise , Carne/microbiologia , Lactobacillales/metabolismo , Lactobacillales/genética , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/química , Ácidos Graxos/metabolismo , Aromatizantes/metabolismo , Aromatizantes/química
3.
Int J Biol Macromol ; 265(Pt 2): 131117, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38522684

RESUMO

Biological polysaccharides such as cellulose, chitin, chitosan, sodium alginate, etc., serve as excellent substrates for 3D printing due to their inherent advantages of biocompatibility, biodegradability, non-toxicity, and absence of secondary pollution. In this review we comprehensively overviewed the principles and processes involved in 3D printing of polysaccharides. We then delved into the diverse application of 3D printed polysaccharides in wastewater treatment, including their roles as adsorbents, photocatalysts, biological carriers, micro-devices, and solar evaporators. Furthermore, we assessed the technical superiority and future potential of polysaccharide 3D prints, envisioning its widespread application. Lastly, we remarked the challenging scientific and engineering aspects that require attention in the scientific research, industrial production, and engineering utilization. By addressing these key points, we aimed to advance the field and facilitate the practical implementation of polysaccharide-based 3D printing technologies in wastewater treatment and beyond.


Assuntos
Celulose , Polissacarídeos , Alginatos , Quitina , Impressão Tridimensional
4.
Plant Cell Rep ; 43(2): 30, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38195770

RESUMO

KEY MESSAGE: Sucrose invertase activity is positively related to osmotic and salt stress resistance in peanut. Sucrose invertases (INVs) have important functions in plant growth and response to environmental stresses. However, their biological roles in peanut are still not fully revealed. In this research, we identified 42 AhINV genes in the peanut genome. They were highly conserved and clustered into three groups with 24 segmental duplication events occurred under purifying selection. Transcriptional expression analysis exhibited that they were all ubiquitously expressed, and most of them were up-regulated by osmotic and salt stresses, with AhINV09, AhINV23 and AhINV19 showed the most significant up-regulation. Further physiochemical analysis showed that the resistance of peanut to osmotic and salt stress was positively related to the high sugar content and sucrose invertase activity. Our results provided fundamental information on the structure and evolutionary relationship of INV gene family in peanut and gave theoretical guideline for further functional study of AhINV genes in response to abiotic stress.


Assuntos
Arachis , Açúcares , Arachis/genética , beta-Frutofuranosidase/genética , Estresse Salino , Sacarose
5.
Genes (Basel) ; 14(11)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003021

RESUMO

The MADS-box family, a substantial group of plant transcription factors, crucially regulates plant growth and development. Although the functions of AGL12-like subgroups have been elucidated in Arabidopsis, rice, and walnut, their roles in grapes remain unexplored. In this study, we isolated VvAGL12, a member of the grape MADS-box group, and investigated its impact on plant growth and biomass production. VvAGL12 was found to localize in the nucleus and exhibit expression in both vegetative and reproductive organs. We introduced VvAGL12 into Arabidopsis thaliana ecotype Columbia-0 and an agl12 mutant. The resulting phenotypes in the agl12 mutant, complementary line, and overexpressed line underscored VvAGL12's ability to promote early flowering, augment plant growth, and enhance production. This was evident from the improved fresh weight, root length, plant height, and seed production, as well as the reduced flowering time. Subsequent transcriptome analysis revealed significant alterations in the expression of genes associated with cell-wall modification and flowering in the transgenic plants. In summary, the findings highlight VvAGL12's pivotal role in the regulation of flowering timing, overall plant growth, and development. This study offers valuable insights, serving as a reference for understanding the influence of the VvAGL12 gene in other plant species and addressing yield-related challenges.


Assuntos
Arabidopsis , Vitis , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vitis/genética , Vitis/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Expressão Ectópica do Gene , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
6.
Pestic Biochem Physiol ; 193: 105430, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37248008

RESUMO

Chlorantraniliprole (CAP) is widely used in pest control, and its environmental residues affect the disease resistance of non-target insect silkworms. Studies have demonstrated that changes in gut microbial communities of insects are associated with susceptibility to pathogens. In the present study, we examined the effects of CAP exposure on the immune system and gut microbial community structure of silkworms. The results showed that after 96 h of exposure to low-concentration CAP, the peritrophic matrix (PM) of silkworm larvae was disrupted, and pathogenic bacteria invaded hemolymph. The trehalase activity in the midgut was significantly decreased, while the activities of chitinase, ß-N-acetylglucosaminidase, and chitin deacetylase were increased considerably, resulting in decreased chitin content in PM. In addition, exposure to CAP reduced the expressions of key genes in the Toll, IMD, and JAK/STAT pathways, ultimately leading to the downregulation of antimicrobial peptides (AMPs) genes and alterations in the structure of the gut microbial community. Therefore, after infection with the conditional pathogen Enterobacter cloacae (E. cloacae), CAP-exposed individuals exhibited significantly lower body weight and higher mortality. These findings showed that exposure to low-concentration CAP impacted the biological defense system of silkworms, changed the gut microbial community structure, and increased silkworms' susceptibility to bacterial diseases. Collectively, these findings provided a new perspective for the safety evaluation of low-concentration CAP exposure in sericulture.


Assuntos
Infecções Bacterianas , Bombyx , Animais , Larva , Quitina , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
7.
Plant Physiol Biochem ; 196: 444-453, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36758291

RESUMO

The SEVEN IN Absentia (SINA), a typical member of the RING E3 ligase family, plays a crucial role in plant growth, development and response to abiotic stress. However, its biological functions in oil crops are still unknown. Previously, we reported that overexpression of AtSINA2 in Arabidopsis positively regulated the drought tolerance of transgenic plants. In this work, we demonstrate that ectopic expression of AtSINA2 in soybean improved the shoot growth, grain yield, drought tolerance and seed oil content in transgenic plants. Compared to wild type, transgenic soybean produced greater shoot biomass and grain yield, and showed improved seed oil and drought tolerance. Physiological analyses exhibited that the increased drought tolerance of transgenic plants was accompanied with a higher chlorophyll content, and a lower malondialdehyde accumulation and water loss during drought stress. Further transcriptomic analyses revealed that the expressions of genes related to plant growth, flowering and stress response were up- or down-regulated in transgenic soybean under both normal and drought stress conditions. Our findings imply that AtSINA2 improved both agricultural production and drought tolerance, and it can be used as a candidate gene for the genetic engineering of new soybean cultivars with improved grain yield and drought resistance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Glycine max/fisiologia , Resistência à Seca , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Grão Comestível/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Secas , Óleos de Plantas/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Pestic Biochem Physiol ; 188: 105223, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36464330

RESUMO

Chlorantraniliprole (CAP) is widely used in the control of agricultural pests, and its residues can affect the formation of silkworm (Bombyx. mori) cocoon easily. To accurately evaluate the toxicity of CAP to silkworms and clarify the mechanism of its effect on silk gland function, we proposed a novel toxicity evaluation method based on the body weight changes after CAP exposure. We also analyzed the Ca2+-related ATPase activity, characterized energy metabolism and transcriptional changes about the autophagy key genes on the downstream signaling pathways. The results showed that after a low concentration of CAP exposed for 96 h, there were CAP residues in the silk glands of B. mori, the activities of Ca2+-ATPase and Ca2+-Mg2+-ATPase decreased significantly (P ≤ 0.01), and the activation of AMPK-related genes AMPK-α and AMPK-ß were up-regulated by 6.39 ± 0.02-fold and 12.33 ± 1.06-fold, respectively, reaching a significant level (P ≤ 0.01)). In addition, the autophagy-related genes Atg1, Atg6, Atg5, Atg7, and Atg8 downstream AMPK were significantly up-regulated at 96 h (P ≤ 0.05). The results of immunohistochemistry and protein expression assay for autophagy marker Atg8 further confirmed the occurrence of autophagy. Overall, our results indicate that CAP exposure leads to autophagy in the silk gland of B. mori and affects their physiological functions, which provides guidance for the evaluation of toxicity of low concentration environmental CAP residues to insects.


Assuntos
Bombyx , Animais , Proteínas Quinases Ativadas por AMP/genética , Autofagia , Adenosina Trifosfatases , Seda
9.
Front Plant Sci ; 13: 1019512, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325560

RESUMO

Rhizoctonia solani Kühn naturally infects and causes Sheath blight disease in cereal crops such as wheat, rice and maize, leading to severe reduction in grain yield and quality. In this work, a new bacterial strain Bacillus halotolerans LDFZ001 showing efficient antagonistic activity against the pathogenic strain Rhizoctonia solani Kühn sh-1 was isolated. Antagonistic, phylogenetic and whole genome sequencing analyses demonstrate that Bacillus halotolerans LDFZ001 strongly suppressed the growth of Rhizoctonia solani Kühn sh-1, showed a close evolutionary relationship with B. halotolerans F41-3, and possessed a 3,965,118 bp circular chromosome. Bioinformatic analysis demonstrated that the genome of Bacillus halotolerans LDFZ001 contained ten secondary metabolite biosynthetic gene clusters (BGCs) encoding five non-ribosomal peptide synthases, two polyketide synthase, two terpene synthases and one bacteriocin synthase, and a new kijanimicin biosynthetic gene cluster which might be responsible for the biosynthesis of novel compounds. Gene-editing experiments revealed that functional expression of phosphopantetheinyl transferase (SFP) and major facilitator superfamily (MFS) transporter genes in Bacillus halotolerans LDFZ001 was essential for its antifungal activity against R. solani Kühn sh-1. Moreover, the existence of two identical chitosanases may also make contribution to the antipathogen activity of Bacillus halotolerans LDFZ001. Our findings will provide fundamental information for the identification and isolation of new sheath blight resistant genes and bacterial strains which have a great potential to be used for the production of bacterial control agents. Importance: A new Bacillus halotolerans strain Bacillus halotolerans LDFZ001 resistant to sheath blight in wheat is isolated. Bacillus halotolerans LDFZ001 harbors a new kijanimicin biosynthetic gene cluster, and the functional expression of SFP and MFS contribute to its antipathogen ability.

10.
Cell Discov ; 8(1): 70, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879274

RESUMO

Little is known regarding why a subset of COVID-19 patients exhibited prolonged positivity of SARS-CoV-2 infection. Here, we found that patients with long viral RNA course (LC) exhibited prolonged high-level IgG antibodies and higher regulatory T (Treg) cell counts compared to those with short viral RNA course (SC) in terms of viral load. Longitudinal proteomics and metabolomics analyses of the patient sera uncovered that prolonged viral RNA shedding was associated with inhibition of the liver X receptor/retinoid X receptor (LXR/RXR) pathway, substantial suppression of diverse metabolites, activation of the complement system, suppressed cell migration, and enhanced viral replication. Furthermore, a ten-molecule learning model was established which could potentially predict viral RNA shedding period. In summary, this study uncovered enhanced inflammation and suppressed adaptive immunity in COVID-19 patients with prolonged viral RNA shedding, and proposed a multi-omic classifier for viral RNA shedding prediction.

11.
Arch Insect Biochem Physiol ; 111(2): e21919, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35637636

RESUMO

Glyphosate is an herbicide widely used worldwide, but whether it is safe to nontarget organisms is controversial. In this study, the lepidopteran model insect silkworm was used to investigate the effects of glyphosate residues. The LC50 (72 h) of glyphosate on silkworm was determined to be 14875.98 mg/L, and after exposure to glyphosate at 2975.20 mg/L (a concentration comparable to that used for weed control in mulberry fields), silkworm growth was inhibited by 9.00%, total cocoon weight was lowered by 10.53%, feed digestibility was decreased by 7.56%, and the activities of alpha-amylase and trypsin were reduced by 10.41% and 21.32%, respectively. Pathological analysis revealed that glyphosate exposure led to significantly damaged midgut, along with thinner basal layer, shedding microvilli, blurred cytoplasmic membrane, and appearance of vacuoles. Exposure to glyphosate also led to accumulation of peroxides in the intestinal tissue; the messenger RNA transcription of SOD, Cu/Zn-SOD, and Mn-SOD was all significantly upregulated by glyphosate treatment for 24 h, while CAT transcription was increased at 24, 48, and 72 h. The activity of SOD was increased significantly at 24 h, while significant activity changes were observed for CAT at 72 and 96 h. These results indicated that exposure to glyphosate caused oxidative stress in the midgut of silkworm and affected the midgut's physiological function. This study provides important insights in evaluating the impact of glyphosate residues in the environment on nontarget organisms.


Assuntos
Bombyx , Animais , Sistema Digestório/metabolismo , Glicina/análogos & derivados , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Glifosato
12.
Sensors (Basel) ; 22(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35270935

RESUMO

It is necessary to detect multi-type farmland obstacles in real time and accurately for unmanned agricultural vehicles. An improved YOLOv5s algorithm based on the K-Means clustering algorithm and CIoU Loss function was proposed to improve detection precision and speed up real-time detection. The K-Means clustering algorithm was used in order to generate anchor box scales to accelerate the convergence speed of model training. The CIoU Loss function, combining the three geometric measures of overlap area, center distance and aspect ratio, was adopted to reduce the occurrence of missed and false detection and improve detection precision. The experimental results showed that the inference time of a single image was reduced by 75% with the improved YOLOv5s algorithm; compared with that of the Faster R-CNN algorithm, real-time performance was effectively improved. Furthermore, the mAP value of the improved algorithm was increased by 5.80% compared with that of the original YOLOv5s, which indicates that using the CIoU Loss function had an obvious effect on reducing the missed detection and false detection of the original YOLOv5s. Moreover, the detection of small target obstacles of the improved algorithm was better than that of the Faster R-CNN.


Assuntos
Algoritmos , Análise por Conglomerados , Fazendas
13.
Plant Dis ; 106(2): 748-750, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34726475

RESUMO

Peanut scorch spot caused by Leptosphaerulina arachidicola is one of the most severe leaf diseases of peanut that causes significant yield loss. Here, we report the first high-quality genome sequence of L. arachidicola JB313 isolated from an infected peanut leaf in China. The genome size is 47.66 Mb, consisting of 65 scaffolds (N50 length = 1.58 Mb) with a G+C content of 49.05%. The information in this report will provide a reference genome for future studies on the peanut scorch spot pathogen in peanut.


Assuntos
Arachis , Ascomicetos , Genoma Fúngico , Doenças das Plantas/microbiologia , Arachis/microbiologia , Ascomicetos/genética , China , Folhas de Planta
14.
Front Microbiol ; 12: 736565, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34751223

RESUMO

Staphylococcus aureus (S. aureus), which is one of the most important species of Staphylococci, poses a great threat to public health. Clustered regularly interspaced short palindromic repeats (CRISPR) and their CRISPR-associated proteins (Cas) are an adaptive immune platform to combat foreign mobile genetic elements (MGEs) such as plasmids and phages. The aim of this study is to describe the distribution and structure of CRISPR-Cas system in S. aureus, and to explore the relationship between CRISPR and horizontal gene transfer (HGT). Here, we analyzed 67 confirmed CRISPR loci and 15 companion Cas proteins in 52 strains of Staphylococci with bioinformatics methods. Comparing with the orphan CRISPR loci in Staphylococci, the strains harboring complete CRISPR-Cas systems contained multiple CRISPR loci, direct repeat sequences (DR) forming stable RNA secondary structures with lower minimum free energy (MFE), and variable spacers with detectable protospacers. In S. aureus, unlike the orphan CRISPRs away from Staphylococcal cassette chromosome mec (SCCmec), the complete CRISPR-Cas systems were in J1 region of SCCmec. In addition, we found a conserved motif 5'-TTCTCGT-3' that may protect their downstream sequences from DNA interference. In general, orphan CRISPR locus in S. aureus differed greatly from the structural characteristics of the CRISPR-Cas system. Collectively, our results provided new insight into the diversity and characterization of the CRISPR-Cas system in S. aureus.

15.
Sci Rep ; 11(1): 21585, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34732764

RESUMO

To clarify the control effects of Trichoderma hamatum strain MHT1134 on Fusarium wilt in continuous pepper cropping fields and its regulatory effects on soil microecology, the physical and chemical properties, enzyme activities, community structures of soil samples from five field types were analysed. Samples were taken from fields that had been continuously planted for 1, 5, 9 years, and applied the strain MHT1134 for 1 and 2 years. The MHT1134 control effects on pepper wilt after application 1 year and 2 years were 63.03% and 70.21%, respectively. 4 kinds of physical and chemical indexes and 6 kinds of enzyme activities in soil were increased. With the continuous cropping years increased, the microbial abundance and diversity decreasing significantly. The relative abundances of Fusarium, Gibberella increased along with the planting years, but decreased after the MHT11134 application. However, the relative abundances of Trichoderma and Chaetomium significantly increased. Additionally, as the cropping years increased, the soil abundance of Actinobacteria gradually decreased, but it significantly increased from 17.56 to 22.44% after the MHT1134 application. Thus, strain MHT1134 effectively improved the microbial community structure of the soil, and it also positively affected soil quality. A continuous application may improve the control effect.


Assuntos
Agricultura/métodos , Hypocreales/metabolismo , Piper nigrum , Microbiologia do Solo , Actinobacteria , Bactérias/genética , Biodiversidade , Produtos Biológicos , Análise por Conglomerados , Produtos Agrícolas , Microbiologia Ambiental , Fermentação , Fungos/metabolismo , Fusarium , Microbiota , Filogenia , Doenças das Plantas/microbiologia , RNA Ribossômico 16S , Solo/química , Trichoderma
16.
Environ Pollut ; 289: 117866, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34343750

RESUMO

The neonicotinoid insecticide acetamiprid is widely applied for pest control in agriculture production, and its exposure often results in adverse effects on a non-target insect, Bombyx mori. However, only few studies have investigated the effects of exposure to sublethal doses of neonicotinoid insecticides on gut microbiota and susceptibility to pathogenic bacteria. In this study, we aimed to explore the possible mechanisms underlying the acetamiprid-induced compositional changes in gut microbiota of silkworm and reduced host resistance against detrimental microbes. This study indicated that sublethal dose of acetamiprid activated the dual oxidase-reactive oxygen species (Duox-ROS) system and induced ROS accumulation, leading to dysregulation of intestinal immune signaling pathways. The evenness and structure of bacterial community were altered. Moreover, after 96 h of exposure to sublethal dose of acetamiprid, several bacteria, such as Pseudomonas sp (Biotype A, DOP-1a, XW34) and Staphylococcus sp (RCB1054, RCB314, X302), invaded the silkworm hemolymph. The survival rate and bodyweight of the acetamiprid treated silkworm larvae inoculated with Enterobacter cloacae (E. cloacae) were significantly lower than the acetamiprid treatment group, suggesting that acetamiprid reduced silkworm resistance against pathogens. These findings indicated that acetamiprid disturbed gut microbial homeostasis of Bombyx mori, resulting in changes in gut microbial community and susceptibility to detrimental microbes.


Assuntos
Bombyx , Animais , Bactérias , Homeostase , Neonicotinoides/toxicidade
17.
Arch Insect Biochem Physiol ; 107(4): e21827, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34173258

RESUMO

Silkworm (Bombyx mori) is an important economic insect and an attractive model system. A series of autophagy-related genes (Atgs) are involved in the autophagic process, and these Atgs have been proved to play important roles in the development. Atg7 stands at the hub of two ubiquitin-like systems involving Atg8 and Atg12 in the autophagic vesicle. In the present study, we cloned and characterized a BmAtg7 gene in Bombyx mori. The open reading frame (ORF) of BmAtg7 was 1908 bp in length, and it encoded a polypeptide of 635 amino acids. BmAtg7 was highly expressed in the posterior silk gland, fatbody, and epidermis. The expression profile of BmAtg7 in the fatbody showed an increasing tendency from day 1 of the 5th instar to the prepupal stage. After chlorantraniliprole (CAP) exposure, the transcriptional level of BmAtg7 was continuously decreased. After depletion of BmAtg7 by RNAi, the expressions of BmAtg7, BmAtg8, and BmEcr were all downregulated, while the expression of BmJHBP2 was upregulated. However, depletion of BmAtg7 did not prevent the metamorphosis of silkworm from larvae to pupae, while the occurrence of such process was delayed. After the 20-hydroxyecdysone (20E) treatment, the expression characteristics of these four genes (BmAtg7, BmAtg8, BmEcr and BmJHBP2) were contrary to the results after depletion of BmAtg7. Our results suggested that although CAP exposure could significantly inhibit the expression of BmAtg7 continuously, the changes of BmAtg7 was not the key factor in CAP-induced metamorphosis defects.


Assuntos
Proteína 7 Relacionada à Autofagia/genética , Bombyx/genética , Sequência de Aminoácidos , Animais , Proteína 7 Relacionada à Autofagia/metabolismo , Bombyx/metabolismo , Clonagem Molecular , Ecdisterona , ortoaminobenzoatos
18.
Insects ; 12(5)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946774

RESUMO

The stick tea thrip Dendrothrips minowai (Priesner) (Thysanoptera: Thripidae) is a destructive pest in tea plantations in south and southwest China. To control this pest, a non-crop banker plant system was developed using a polyphagous predator Orius strigicollis (Poppius) (Heteroptera: Anthocoridae) with the black bean aphid Aphis fabae (Scopoli) (Hemiptera: Aphididae) as an alternative prey and the faba bean Vicia faba as the banker plant to support the predator in targeting the pest. The fitness of A. fabae on tea plants and faba bean was evaluated to determine its host specificity. Moreover, the control efficacy of the banker plant system on D. minowai on tea plants was tested in the laboratory and compared with that of direct release of O. strigicollis. The experiments showed that faba bean was an excellent non-crop host for A. fabae because, while the aphid population increased quickly on faba bean, it could only survive for up to 9 days on tea plants. Compared with direct release of O. strigicollis, lower densities of pest were observed when introducing the banker plant system. Our results indicate that this banker plant system has the potential to be implemented in the field to improve the control of the pest thrips.

19.
Pestic Biochem Physiol ; 174: 104824, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33838717

RESUMO

Acetamiprid is a new type of nicotinic insecticide that is widely used in pest control. Its environmental residues may cause silkworm cocooning disorder. In this study, silkworms that received continuous feeding of low concentration acetamiprid (0.15 mg/L) showed significantly decreased silk gland index and cocooning rate. Gene expression profiling of posterior silk glands (PSGs) revealed that the differentially expressed genes were significantly enriched in oxidative stress-related signal pathways with significant up-regulation. The contents of both H2O2 and MDA were increased, along with significantly elevated SOD and CAT activities, all of which reached maximal values at 48 h when H2O2 and MDA's contents were 10.46 and 7.98 nmol/mgprot, respectively, and SOD and CAT activities were 5.51 U/mgprot and 33.48 U/gprot, respectively. The transcription levels of antioxidant enzyme-related genes SOD, Mn-SOD, CuZn-SOD, CAT, TPX and GPX were all up-regulated, indicating that exposure to low concentration acetamiprid led to antioxidant response in silkworm PSG. The key genes in the FoxO/CncC/Keap1 signaling pathway that regulates antioxidant enzyme activity, FoxO, CncC, Keap1, NQO1, HO-1 and sMaf were all up-regulated during the whole process of treatment, with maximal values being reached at 72 h with 2.91, 1.46, 1.82, 2.52, 2.32 and 4.01 times of increases, respectively. These results demonstrate that exposure to low concentration acetamiprid causes oxidative stress in silkworm PSG, which may be the cause of cocooning disorder in silkworm. Our study provides a reference for the safety evaluation of environmental residues of acetamiprid on non-target insects.


Assuntos
Bombyx , Animais , Bombyx/genética , Bombyx/metabolismo , Crescimento e Desenvolvimento , Peróxido de Hidrogênio , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2/metabolismo , Neonicotinoides , Estresse Oxidativo , Seda
20.
Kaohsiung J Med Sci ; 37(2): 121-127, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33022894

RESUMO

Cullin 4B (CUL4B) was reported to be closely related to the progression of some tumors, but its function in clear cell renal cell carcinoma (ccRCC) has not been reported. Our present study found CUL4B was upregulated in ccRCC, and CUL4B knockdown markedly inhibited ccRCC cell growth and induced apoptosis. In addition, CUL4B knockdown markedly inhibited antiapoptotic proteins' expression in ccRCC cells, including Mcl-1 and Bcl-2, and silenced CUL4B also induced the cleavages of PARP, an important index of apoptosis. We also confirmed microRNA-217 (miR-217) was downregulated in ccRCC tumor tissues, and negatively correlated with CUL4B expression. Further investigations revealed miR-217 targeted CUL4B and markedly inhibited its expression in ccRCC cells. In addition, overexpression of miR-217 by mimics significantly suppressed ccRCC cell growth. In contrast, enforced expression of CUL4B significantly abolished miR-217-induced cell survival inhibition in ccRCC cells. In conclusion, our present results suggested targeting miR-217-CUL4B axis would be a promising strategy for ccRCC treatment.


Assuntos
Apoptose , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Proteínas Culina/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/patologia , MicroRNAs/metabolismo , Apoptose/genética , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , MicroRNAs/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA