Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(22): 12775-12787, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38776285

RESUMO

Excessive intake of fat and fructose in Western diets has been confirmed to induce renal lipotoxicity, thereby driving the progression of chronic kidney disease (CKD). This study was conducted to evaluate the efficacy of magnoflorine in a CKD mouse model subjected to high-fat and high-fructose diets. Our results demonstrated that magnoflorine treatment ameliorated abnormal renal function indices (serum creatinine, urea nitrogen, uric acid, and urine protein) in high-fat- and high-fructose-fed mice. Histologically, renal tubular cell steatosis, lipid deposition, tubular dilatation, and glomerular fibrosis were significantly reduced by the magnoflorine treatment in these mice. Mechanistically, magnoflorine promotes Parkin/PINK1-mediated mitophagy, thereby inhibiting NLRP3/Caspase-1-mediated pyroptosis. Consistent findings were observed in the palmitic acid-incubated HK-2 cell model. Notably, both silencing of Parkin and the use of a mitophagy inhibitor reversed the inhibitory effect of magnoflorine on NLRP3 inflammasome activation in vitro. Therefore, the present study provides compelling evidence that magnoflorine improves renal injury in high-fat- and high-fructose-fed mice by promoting Parkin/PINK1-dependent mitophagy to inhibit NLRP3 inflammasome activation and pyroptosis. Our findings suggest that dietary supplementation with magnoflorine and magnoflorine-rich foods (such as magnolia) might be an effective strategy for the prevention of CKD.


Assuntos
Caspase 1 , Dieta Hiperlipídica , Frutose , Camundongos Endogâmicos C57BL , Mitofagia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas Quinases , Piroptose , Insuficiência Renal Crônica , Ubiquitina-Proteína Ligases , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Camundongos , Piroptose/efeitos dos fármacos , Frutose/efeitos adversos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Masculino , Mitofagia/efeitos dos fármacos , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/prevenção & controle , Dieta Hiperlipídica/efeitos adversos , Humanos , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Caspase 1/metabolismo , Caspase 1/genética , Aporfinas/farmacologia , Inflamassomos/metabolismo
2.
Phytomedicine ; 129: 155703, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38723527

RESUMO

BACKGROUND: Non-alcoholic steatohepatitis (NASH), the inflammatory subtype in the progression of non-alcoholic fatty liver disease, is becoming a serious burden threatening human health, but no approved medication is available to date. Mononoside is a natural active substance derived from Cornus officinalis and has been confirmed to have great potential in regulating lipid metabolism in our previous studies. However, its effect and mechanism to inhibit the progression of NASH remains unclear. PURPOSE: Our work aimed to explore the action of mononoside in delaying the progression of NASH and its regulatory mechanisms from the perspective of regulating lipophagy. METHODS AND RESULTS: Male C57BL/6 mice were fed with a high-fat and high-fructose diet for 16 weeks to establish a NASH mouse model. After 8 weeks of high-fat and high-fructose feeding, these mice were administrated with different doses of morroniside. H&E staining, ORO staining, Masson staining, RNA-seq, immunoblotting, and immunofluorescence were performed to determine the effects and molecular mechanisms of morroniside in delaying the progression of NASH. In this study, we found that morroniside is effective in attenuating hepatic lipid metabolism disorders and inflammatory response activation, thereby limiting the progression from simple fatty liver to NASH in high-fat and high-fructose diet-fed mice. Mechanistically, we identified AMPK signaling as the key molecular pathway for the positive efficacy of morroniside by transcriptome sequencing. Our results revealed that morroniside maintained hepatic lipid metabolism homeostasis and inhibited NLRP3 inflammasome activation by promoting AMPKα phosphorylation-mediated lipophagy and fatty acid oxidation. Consistent results were observed in palmitic acid-treated cell models. Of particular note, silencing AMPKα both in vivo and in vitro reversed morroniside-induced lipophagy flux enhancement and NLRP3 inflammasome inhibition, emphasizing the critical role of AMPKα activation in the effect of morroniside in inhibiting NASH progression. CONCLUSION: In summary, the present study provides strong evidence for the first time that morroniside inhibits NASH progression by promoting AMPK-dependent lipophagy and inhibiting NLRP3 inflammasome activation, suggesting that morroniside is expected to be a potential molecular entity for the development of therapeutic drugs for NASH.


Assuntos
Proteínas Quinases Ativadas por AMP , Dieta Hiperlipídica , Modelos Animais de Doenças , Metabolismo dos Lipídeos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Masculino , Camundongos , Dieta Hiperlipídica/efeitos adversos , Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Progressão da Doença , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Glicosídeos/farmacologia , Fígado/efeitos dos fármacos , Cornus/química , Humanos , Frutose , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos
3.
Toxicol Sci ; 199(1): 63-80, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38439560

RESUMO

Prednisone, a widely used glucocorticoid drug in human and veterinary medicine, has been reported to cause developmental toxicity. However, systematic studies about the effect of prednisone on fetal liver development are still unclear. We investigated the potential effects of maternal exposure to clinically equivalent doses of prednisone during different gestational stages on cell proliferation and apoptosis, cell differentiation, glucose and lipid metabolism, and hematopoiesis in the liver of fetal mice, and explored the potential mechanisms. Results showed that prenatal prednisone exposure (PPE) could suppress cell proliferation, inhibit hepatocyte differentiation, and promote cholangiocyte differentiation in the fetal liver. Meanwhile, PPE could result in the enhancement of glyconeogenesis and bile acid synthesis and the inhibition of fatty acid ß-oxidation and hematopoiesis in the fetal liver. Further analysis found that PPE-induced alterations in liver development had obvious stage and sex differences. Overall, the alteration in fetal liver development and function induced by PPE was most pronounced during the whole pregnancy (GD0-18), and the males were relatively more affected than the females. Additionally, fetal hepatic insulin-like growth factor 1 (IGF1) signaling pathway was inhibited by PPE. In conclusion, PPE could impact fetal liver development and multiple functions, and these alterations might be partially related to the inhibition of IGF1 signaling pathway.


Assuntos
Fígado , Prednisona , Animais , Feminino , Gravidez , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/embriologia , Masculino , Prednisona/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Camundongos , Proliferação de Células/efeitos dos fármacos , Glucocorticoides/toxicidade , Exposição Materna/efeitos adversos , Desenvolvimento Fetal/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/metabolismo , Transdução de Sinais/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos
4.
Life Sci ; 329: 121985, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37516432

RESUMO

AIMS: Azithromycin is widely used in clinical practice for treating maternal infections during pregnancy. Meanwhile, azithromycin, as an "emerging pollutant", is increasingly polluting the environment due to the rapidly increasing usage (especially after the COVID-19). Previous studies have suggested a possible teratogenic risk of prenatal azithromycin exposure (PAzE), but its effects on fetal multi-organ development are still unclear. This study aimed to explore the potential impacts of PAzE. MATERIALS AND METHODS: We focused on pregnancy outcomes, maternal/fetal serum phenotypes, and fetal multiple organ development in mice at different doses (50/200 mg/kg·d) during late pregnancy or at 200 mg/kg·d during different stages (mid-/late-pregnancy) and courses (single-/multi-course). KEY FINDINGS: The results showed PAzE increased the rate of the absorbed fetus during mid-pregnancy and increased the intrauterine growth retardation rate (IUGR) during late pregnancy. PAzE caused multiple blood phenotypic changes in maternal and fetal mice, among which the number and degree of changes in fetal blood indicators were more significant. Moreover, PAzE inhibited long bone/cartilage development and adrenal steroid synthesis, promoting hepatic lipid production and ovarian steroid synthesis in varying degrees. The order of severity might be bone/cartilage > liver > gonads > other organs. PAzE-induced multi-organ alterations differed in stages, courses doses and fetal sex. The most apparent changes might be in high-dose, mid-pregnancy, multi-course, and female, while there was no typical rule for a dose-response relationship. SIGNIFICANCE: This study confirmed PAzE could cause fetal developmental abnormalities and multi-organ functional alterations, which deepens the comprehensive understanding of azithromycin's fetal developmental toxicity.


Assuntos
Azitromicina , COVID-19 , Gravidez , Camundongos , Feminino , Animais , Humanos , Azitromicina/toxicidade , Tratamento Farmacológico da COVID-19 , Desenvolvimento Fetal , Retardo do Crescimento Fetal , Esteroides/farmacologia
5.
J Pharm Anal ; 13(12): 1375-1387, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38223453

RESUMO

Ginsenoside Rc, a dammarane-type tetracyclic triterpenoid saponin primarily derived from Panax ginseng, has garnered significant attention due to its diverse pharmacological properties. This review outlined the sources, putative biosynthetic pathways, extraction, and quantification techniques, as well as the pharmacokinetic properties of ginsenoside Rc. Furthermore, this study explored the pharmacological effects of ginsenoside Rc against metabolic syndrome (MetS) across various phenotypes including obesity, diabetes, atherosclerosis, non-alcoholic fatty liver disease, and osteoarthritis. It also highlighted the impact of ginsenoside Rc on multiple associated signaling molecules. In conclusion, the anti-MetS effect of ginsenoside Rc is characterized by its influence on multiple organs, multiple targets, and multiple ways. Although clinical investigations regarding the effects of ginsenoside Rc on MetS are limited, its proven safety and tolerability suggest its potential as an effective treatment option.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA