Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Clin Cancer Res ; 29(24): 5128-5139, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37773632

RESUMO

PURPOSE: Leiomyosarcoma (LMS) is an aggressive sarcoma for which standard chemotherapies achieve response rates under 30%. There are no effective targeted therapies against LMS. Most LMS are characterized by chromosomal instability (CIN), resulting in part from TP53 and RB1 co-inactivation and DNA damage repair defects. We sought to identify therapeutic targets that could exacerbate intrinsic CIN and DNA damage in LMS, inducing lethal genotoxicity. EXPERIMENTAL DESIGN: We performed clinical targeted sequencing in 287 LMS and genome-wide loss-of-function screens in 3 patient-derived LMS cell lines, to identify LMS-specific dependencies. We validated candidate targets by biochemical and cell-response assays in vitro and in seven mouse models. RESULTS: Clinical targeted sequencing revealed a high burden of somatic copy-number alterations (median fraction of the genome altered =0.62) and demonstrated homologous recombination deficiency signatures in 35% of LMS. Genome-wide short hairpin RNA screens demonstrated PRKDC (DNA-PKcs) and RPA2 essentiality, consistent with compensatory nonhomologous end joining (NHEJ) hyper-dependence. DNA-PK inhibitor combinations with unconventionally low-dose doxorubicin had synergistic activity in LMS in vitro models. Combination therapy with peposertib and low-dose doxorubicin (standard or liposomal formulations) inhibited growth of 5 of 7 LMS mouse models without toxicity. CONCLUSIONS: Combinations of DNA-PK inhibitors with unconventionally low, sensitizing, doxorubicin dosing showed synergistic effects in LMS in vitro and in vivo models, without discernable toxicity. These findings underscore the relevance of DNA damage repair alterations in LMS pathogenesis and identify dependence on NHEJ as a clinically actionable vulnerability in LMS.


Assuntos
Leiomiossarcoma , Animais , Camundongos , Humanos , Leiomiossarcoma/tratamento farmacológico , Leiomiossarcoma/genética , Leiomiossarcoma/patologia , Reparo do DNA/genética , Dano ao DNA , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , DNA
2.
Angew Chem Int Ed Engl ; 59(44): 19468-19477, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-31880046

RESUMO

A series of structurally diverse alcoholamine- and alkoxyalkylamine-functionalized variants of the metal-organic framework Mg2 (dobpdc) are shown to adsorb CO2 selectively via cooperative chain-forming mechanisms. Solid-state NMR spectra and optimized structures obtained from van der Waals-corrected density functional theory calculations indicate that the adsorption profiles can be attributed to the formation of carbamic acid or ammonium carbamate chains that are stabilized by hydrogen bonding interactions within the framework pores. These findings significantly expand the scope of chemical functionalities that can be utilized to design cooperative CO2 adsorbents, providing further means of optimizing these powerful materials for energy-efficient CO2 separations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA