Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 368
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39150379

RESUMO

Background: Although low-level laser therapy (LLLT) is a widely used noninvasive treatment because of photobiomodulation effects, its application for xerostomia remained uncertain. Tight junctions (TJs), mainly composed of claudins, occludin, and ZO family members, are crucial structures that determine material transport through paracellular pathway in salivary gland epithelial cells. This work aimed to investigate whether LLLT affected salivary secretion through epithelial TJs. Methods: Transepithelial electrical resistance (TER) measurement and paracellular permeability assay were applied to evaluate paracellular permeability in submandibular gland (SMG)-C6 cells after irradiation with 540 nm green light. Immunofluorescence and western blot were used to detect the expression of TJ proteins. Quantitative phosphoproteomics were performed to explore possible intracellular signals. Results: We found that irradiation with 540 nm green light significantly decreased TER values while increased paracellular transport in SMG-C6 cells. 540 nm green light-induced redistribution of claudin-1, -3, and -4, but not occludin or ZO-1. Moreover, above phenomena were abolished by preincubation with capsazepine, an antagonist of transient receptor potential vanilloid subtype 1. Notably, irradiation with 540 nm green light on the skin covering the whole submandibular gland regions promoted salivary secretion and attenuated lymphocytic infiltration in 21-week-old non-obese diabetic mice (n = 5 per group), a xerostomia animal model for Sjögren's syndrome. Through in-depth bioinformatics analysis and expression verification, ERK1/2 and EphA2 served as potential canonical and noncanonical signals underlying 540 nm green light. Conclusions: Our findings uncovered the novel therapeutic effects of 540 nm green light on xerostomia through regulation on the expression and distribution of TJs.

2.
Biomater Sci ; 12(17): 4283-4300, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39028030

RESUMO

The advancement of gold nanoclusters (Au NCs) has given rise to a new era in fabricating functional materials due to their controllable morphology, stable optical properties, and excellent biocompatibility. Assemblies based on Au NCs demonstrate significant potentiality in constructing multiple structures as acceptable agents in applications such as sensing, imaging technology, and drug delivery systems. In addition, the assembled strategies illustrate the integration mechanism between each component while facing material requirement. It is necessary to provide supplementary and comprehensive reviews on the assembled functional structures (based Au NCs), which hold promise for applications and could expand their functional range and potential applications. This review focuses on the assembled structures of Au NCs in combination with metals, metal oxides, and non-metal materials, which are intricately arranged through various interaction forces including covalent bonds and metal coordination, resulting in a diverse array of multifunctional Au NC assemblies. These assemblies have widespread applications in fields such as biological imaging, drug delivery, and optical devices. The review concludes by highlighting the challenges and future prospects of Au NC assemblies, emphasizing the importance of continued research to advance nanomaterial assembly innovation.


Assuntos
Sistemas de Liberação de Medicamentos , Ouro , Nanopartículas Metálicas , Ouro/química , Nanopartículas Metálicas/química , Humanos , Materiais Biocompatíveis/química
3.
J Biomater Sci Polym Ed ; 35(12): 1863-1878, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38830010

RESUMO

Baicalin (BAN) has shown promise in alleviating myocardial ischemia/reperfusion (I/R) injury, yet its limited solubility and biocompatibility have hindered its application. Developing drug delivery systems is a promising strategy to enhance the therapeutic potential of BAN in the context of I/R injury. This study aims to prepare a BAN-loaded nanodrug system using polydopamine (PDA)-modified Zeolitic imidazolate framework-8 (ZIF-8) as a carrier, with the goal of improving BAN's mitigating effects on I/R injury. We prepared the BAN nanoparticles (NPs) system, PZB NPs, using ZIF-8 as the carrier. The system was characterized in terms of morphology, particle size, zeta potential, and X-ray diffraction (XRD). We assessed the cytotoxicity of PZB NPs in H9c2 cells, investigated its effects and mechanisms in H/R-induced H9c2 cells, and evaluated its ability to alleviate myocardial I/R injury in rats. PZB NPs exhibited good dispersion, with a BAN loading efficiency of 26.43 ± 1.55%, a hydrated particle size of 102.21 ± 1.19 nm, and a zeta potential of -24.84 ± 0.07 mV. It displayed slow and sustained drug release in an acidic environment (pH 5.5). In vitro studies revealed that PZB NPs was non-cytotoxic and significantly enhanced the recovery of H/R injury H9c2 cell viability. PZB NPs suppressed cell apoptosis, activated the Nrf2/HO-1 pathway, and cleared ROS. In vivo study demonstrated that PZB NPs significantly reduced infarct size, ameliorated fibrosis and improved heart function. The PZB NPs markedly enhances BAN's ability to alleviate I/R injury, both in vitro and in vivo, offering a promising drug delivery system for clinical applications.


Assuntos
Portadores de Fármacos , Flavonoides , Indóis , Traumatismo por Reperfusão Miocárdica , Nanopartículas , Polímeros , Ratos Sprague-Dawley , Zeolitas , Animais , Indóis/química , Indóis/farmacologia , Polímeros/química , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Ratos , Nanopartículas/química , Portadores de Fármacos/química , Flavonoides/química , Flavonoides/farmacologia , Flavonoides/administração & dosagem , Masculino , Zeolitas/química , Linhagem Celular , Liberação Controlada de Fármacos , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Tamanho da Partícula , Sobrevivência Celular/efeitos dos fármacos , Imidazóis/química , Imidazóis/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo
4.
J Neurotrauma ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38818807

RESUMO

The kallikrein-kinin system is one of the first inflammatory pathways to be activated following traumatic brain injury (TBI) and has been shown to exacerbate brain edema formation in the acute phase through activation of bradykinin 2 receptors (B2R). However, the influence of B2R on chronic post-traumatic damage and outcome is unclear. In the current study, we assessed long-term effects of B2R-knockout (KO) after experimental TBI. B2R KO mice (heterozygous, homozygous) and wild-type (WT) littermates (n = 10/group) were subjected to controlled cortical impact (CCI) TBI. Lesion size was evaluated by magnetic resonance imaging up to 90 days after CCI. Motor and memory function were regularly assessed by Neurological Severity Score, Beam Walk, and Barnes maze test. Ninety days after TBI, brains were harvested for immunohistochemical analysis. There was no difference in cortical lesion size between B2R-deficient and WT animals 3 months after injury; however, hippocampal damage was reduced in B2R KO mice (p = 0.03). Protection of hippocampal tissue was accompanied by a significant improvement of learning and memory function 3 months after TBI (p = 0.02 WT vs. KO), whereas motor function was not influenced. Scar formation and astrogliosis were unaffected, but B2R deficiency led to a gene-dose-dependent attenuation of microglial activation and a reduction of CD45+ cells 3 months after TBI in cortex (p = 0.0003) and hippocampus (p < 0.0001). These results suggest that chronic hippocampal neurodegeneration and subsequent cognitive impairment are mediated by prolonged neuroinflammation and B2R. Inhibition of B2R may therefore represent a novel strategy to reduce long-term neurocognitive deficits after TBI.

5.
Artigo em Chinês | MEDLINE | ID: mdl-38563174

RESUMO

Objective:To explore the clinical efficacy of surgical excision combined with low-energy X-ray irradiation in the treatment of ear keloids. Methods:Clinical data of 32 cases of ear keloid lesions that received surgical treatment alone or surgery combined with radiotherapy from March 2019 to November 2022 in the Department of Otorhinolaryngology Head and Neck Surgery of the Tianjin First Central Hospital were retrospectively analyzed. Among them, 10 cases received radiotherapy and 22 cases did not receive radiotherapy. The radiotherapy group received irradiation with a large divided dose of 50 kV low-energy X-rays. The mode of fractionation radiotherapy was as follows: the first was 10 Gy of intraoperative radiation therapy and the second was 8 Gy on the 3rd postoperative day for a total of 18 Gy. The local efficacy and skin radiation reaction were observed at a follow-up of 8-52 months. Results:The median follow-up was 26 months, and as of the date of the last follow-up, 9 cases were cured and 1 case was ineffective in the radiotherapy group, with an effective rate of 90.0%, while 9 cases were cured and 13 cases were ineffective in the no-radiotherapy group, with an effective rate of 40.9%. The recurrence of ear keloids was not related to the side, site, or etiology of the patient's onset(P>0.05). Recurrence was related to whether or not the patients received radiotherapy(χ²=4.885, P<0.05), and the recurrence rate in the radiotherapy group(10.0%) was significantly lower than that in the non-radiotherapy group(59.1%). Conclusion:Surgical excision combined with low-energy X-ray irradiation therapy is an effective method of treating keloids in the ear, especially with intraoperative radiation therapy can achieve more satisfactory results.


Assuntos
Queloide , Humanos , Raios X , Queloide/radioterapia , Queloide/cirurgia , Estudos Retrospectivos , Resultado do Tratamento , Terapia Combinada , Recidiva
6.
J Exp Clin Cancer Res ; 43(1): 114, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627815

RESUMO

BACKGROUND: The efficacy of anti-PD-1 therapy is primarily hindered by the limited T-cell immune response rate and immune evasion capacity of tumor cells. Autophagy-related protein 7 (ATG7) plays an important role in autophagy and it has been linked to cancer. However, the role of ATG7 in the effect of immune checkpoint blockade (ICB) treatment on high microsatellite instability (MSI-H)/mismatch repair deficiency (dMMR) CRC is still poorly understood. METHODS: In this study, patients from the cancer genome altas (TCGA) COAD/READ cohorts were used to investigate the biological mechanism driving ATG7 development. Several assays were conducted including the colony formation, cell viability, qRT-PCR, western blot, immunofluorescence, flow cytometry, ELISA, immunohistochemistry staining and in vivo tumorigenicity tests. RESULTS: We found that ATG7 plays a crucial role in MSI-H CRC. Its knockdown decreased tumor growth and caused an infiltration of CD8+ T effector cells in vivo. ATG7 inhibition restored surface major histocompatibility complex I (MHC-I) levels, causing improved antigen presentation and anti-tumor T cell response by activating reactive oxygen species (ROS)/NF-κB pathway. Meanwhile, ATG7 inhibition also suppressed cholesterol accumulation and augmentation of anti-tumor immune responses. Combining ATG7 inhibition and statins improved the therapeutic benefit of anti-PD-1 in MSI-H CRC. Importantly, CRC patients with high expression of both ATG7 and recombinant 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) experienced worse prognosis compared to those with low ATG7 and HMGCR expression. CONCLUSIONS: Inhibition of ATG7 leads to upregulation of MHC-I expression, augments immune response and suppresses cholesterol accumulation. These findings demonstrate that ATG7 inhibition has therapeutic potential and application of statins can increase the sensitivity to immune checkpoint inhibitors.


Assuntos
Neoplasias Encefálicas , Neoplasias Colorretais , Inibidores de Hidroximetilglutaril-CoA Redutases , Síndromes Neoplásicas Hereditárias , Humanos , Proteína 7 Relacionada à Autofagia/genética , Colesterol , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Reparo de Erro de Pareamento de DNA , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Imunidade , Instabilidade de Microssatélites
8.
Anal Chem ; 96(12): 5037-5045, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38477697

RESUMO

Uranium poses severe health risks due to its radioactivity and chemical toxicity if released into the environment. Therefore, there is an urgent demand to develop sensing materials in situ monitoring of uranium with high sensitivity and stability. In this work, a fluorescent Eu3+-TFPB-Bpy is synthesized by grafting Eu3+ cation onto TFPB-Bpy covalent organic framework (COF) synthesized through Schiff base condensation of monomers 1,3,5-tris(4-formylphenyl)benzene (TFPB) and 5,5'-diamino-2,2'-bipyridine (Bpy). The fluorescence of Eu3+-TFPB-Bpy is enhanced compared with that of TFPB-Bpy, which is originated from the intramolecular rotations of building blocks limited by the bipyridine units of TFPB-Bpy coordinated with Eu3+. More significantly, Eu3+-TFPB-Bpy is a highly efficient probe for sensing UO22+ in aqueous solution with the luminescence intensity efficiently amplified by complexation of UO22+ with Eu3+. The turn-on sensing capability was derived from the resonance energy transfer occurring from UO22+ to the Eu3+-TFPB-Bpy. The developed probe displayed desirable linear range from 5 nM to 5 µM with good selectivity and rapid response time (2 s) for UO22+ in mining wastewater. This strategy provides a vivid illustration for designing luminescence lanthanide COF hybrid materials with applications in environmental monitoring.

9.
Respir Res ; 25(1): 67, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317146

RESUMO

Chronic obstructive pulmonary disease (COPD) is a leading aging related cause of global mortality. Small airway narrowing is recognized as an early and significant factor for COPD development. Senescent fibroblasts were observed to accumulate in lung of COPD patients and promote COPD progression through aberrant extracellular matrix (ECM) deposition and senescence-associated secretory phenotype (SASP). On the basis of our previous study, we further investigated the the causes for the increased levels of miR-377-3p in the blood of COPD patients, as well as its regulatory function in the pathological progression of COPD. We found that the majority of up-regulated miR-377-3p was localized in lung fibroblasts. Inhibition of miR-377-3p improved chronic smoking-induced COPD in mice. Mechanistically, miR-377-3p promoted senescence of lung fibroblasts, while knockdown of miR-377-3p attenuated bleomycin-induced senescence in lung fibroblasts. We also identified ZFP36L1 as a direct target for miR-377-3p that likely mediated its pro senescence activity in lung fibroblasts. Our data reveal that miR-377-3p is crucial for COPD pathogenesis, and may serve as a potential target for COPD therapy.


Assuntos
Fator 1 de Resposta a Butirato , MicroRNAs , Doença Pulmonar Obstrutiva Crônica , Animais , Humanos , Camundongos , Envelhecimento , Fator 1 de Resposta a Butirato/metabolismo , Senescência Celular/genética , Fibroblastos/metabolismo , Pulmão/metabolismo , MicroRNAs/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo
10.
Pharmacol Res ; 201: 107097, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354870

RESUMO

As the world's fourth most deadly cancer, colorectal cancer (CRC) still needed the novel therapeutic drugs and target urgently. Although cyclin-dependent kinase 12 (CDK12) has been shown to be implicated in the malignancy of several types of cancer, its functional role and mechanism in CRC remain largely unknown. Here, we found that suppression of CDK12 inhibited tumor growth in CRC by inducing apoptosis. And CDK12 inhibition triggered autophagy by upregulating autophagy related gene 7 (ATG7) expression. Inhibition of autophagy by ATG7 knockdown and chloroquine (CQ) further decreased cell viability induced by CDK12 inhibition. Further mechanism exploration showed that CDK12 interacted with protein kinase B (AKT) regulated autophagy via AKT/forkhead box O3 (AKT/FOXO3) pathway. FOXO3 transcriptionally upregulated ATG7 expression and autophagy when CDK12 inhibition in CRC. Level of CDK12 and p-FOXO3/FOXO3 ratio were correlated with survival in CRC patients. Moreover, CDK12 inhibition improved the efficacy of anti-programmed cell death 1(PD-1) therapy in CRC murine models by enhancing CD8 + T cells infiltration. Thus, our study founded that CDK12 inhibition upregulates ATG7 triggering autophagy via AKT/FOXO3 pathway and enhances anti-PD-1 efficacy in CRC. We revealed the roles of CDK12/FOXO3/ATG7 in regulating CRC progression, suggesting potential biomarkers and therapeutic target for CRC.


Assuntos
Neoplasias Colorretais , Proteínas Proto-Oncogênicas c-akt , Humanos , Animais , Camundongos , Quinases Ciclina-Dependentes , Apoptose , Autofagia , Neoplasias Colorretais/tratamento farmacológico , Proteína Forkhead Box O3
11.
Heliyon ; 10(1): e23167, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38169774

RESUMO

Hyperactivation of ribosome biosynthesis (RiBi) is a hallmark of cancer, and targeting ribosome biogenesis has emerged as a potential therapeutic strategy. The depletion of TAF1B, a major component of selectivity factor 1 (SL1), disrupts the pre-initiation complex, preventing RNA polymerase I from binding ribosomal DNA and inhibiting the hyperactivation of RiBi. Here, we investigate the role of TAF1B, in regulating RiBi and proliferation in stomach adenocarcinoma (STAD). We disclosed that the overexpression of TAF1B correlates with poor prognosis in STAD, and found that knocking down TAF1B effectively inhibits STAD cell proliferation and survival in vitro and in vivo. TAF1B knockdown may also induce nucleolar stress, and promote c-MYC degradation in STAD cells. Furthermore, we demonstrate that TAF1B depletion impairs rRNA gene transcription and processing, leading to reduced ribosome biogenesis. Collectively, our findings suggest that TAF1B may serve as a potential therapeutic target for STAD and highlight the importance of RiBi in cancer progression.

12.
Small ; 20(25): e2310672, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38229539

RESUMO

At present, poor stability and carrier transfer efficiency are the main problems that limit the development of perovskite-based photoelectric technologies. In this work, hydrogen-bonded cocrystal-coated perovskite composite (PeNCs@NHS-M) is easily obtained by inducing rapid crystallization of melamine (M) and N-hydroxysuccinimide (NHS) with PeNCs as the nuclei. The outer NHS-M cocrystal passivates the undercoordinated lead atoms by forming covalent bonds, thereby greatly reducing the trap density while maintaining good structure stability for perovskite nanocrystals. Moreover, benefiting from the interfacial covalent band linkage and long-range ordered structures of cocrystals, the charge transfer efficiency is effectively enhanced and PeNCs@NHS-M displays superior photoelectric performance. Based on the excellent photoelectric performance and abundant active sites of PeNCs@NHS-M, photocatalytic reduction of uranium is realized. PeNCs@NHS-M exhibits U(VI) reduction removal capability of up to 810.1 mg g-1 in the presence of light. The strategy of cocrystals trapping perovskite nanocrystals provides a simple synthesis method for composites and opens up a new idea for simultaneously improving the stability and photovoltaic performance of perovskite.

13.
Oral Dis ; 30(1): 3-22, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36825434

RESUMO

Tight junctions (TJs) are cell-cell interactions that localize at the most apical portion of epithelial/endothelial cells. One of the predominant functions of TJs is to regulate material transport through paracellular pathway, which serves as a selective barrier. In recent years, the expression and function of TJs in salivary glands has attracted great interest. The characteristics of multiple salivary gland TJ proteins have been identified. During salivation, the activation of muscarinic acetylcholine receptor and transient receptor potential vanilloid subtype 1, as well as other stimuli, promote the opening of acinar TJs by inducing internalization of TJs, thereby contributing to increased paracellular permeability. Besides, endothelial TJs are also redistributed with leakage of blood vessels in cholinergic-stimulated submandibular glands. Furthermore, under pathological conditions, such as Sjögren's syndrome, diabetes mellitus, immunoglobulin G4-related sialadenitis, and autotransplantation, the integrity and barrier function of TJ complex are impaired and may contribute to hyposalivation. Moreover, in submandibular glands of Sjögren's syndrome mouse model and patients, the endothelial barrier is disrupted and involved in hyposecretion and lymphocytic infiltration. These findings enrich our understanding of the secretory mechanisms that link the importance of epithelial and endothelial TJ functions to salivation under both physiological and pathophysiological conditions.


Assuntos
Sialorreia , Síndrome de Sjogren , Camundongos , Animais , Humanos , Junções Íntimas/metabolismo , Junções Íntimas/patologia , Síndrome de Sjogren/patologia , Células Endoteliais , Glândulas Salivares/patologia , Saliva/metabolismo , Glândula Submandibular/metabolismo
14.
Postgrad Med J ; 100(1183): 283-288, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38158712

RESUMO

Trimethylamine-N-oxide (TMAO) is a common intestinal metabolite. The Choline in the nutrient forms TMA under the action of the gut microbiota, which passes through the liver and eventually forms TMAO. Initial studies of TMAO focused on cardiovascular disease, but as research progressed, TAMO's effects were found to be multisystem and closely related to the development of neurological diseases. Intestinal tract is the organ with the largest concentration of bacteria in human body, and the composition and metabolism of gut microbiota affect human health. As a two-way communication axis connecting the central nervous system and the gastrointestinal tract, the brain-gut axis provides the structural basis for TMAO to play its role. This article will review the correlation between TMA/TMAO and neurological diseases in order to find new directions and new targets for the treatment of neurological diseases.


Assuntos
Microbioma Gastrointestinal , Metilaminas , Doenças do Sistema Nervoso , Metilaminas/metabolismo , Humanos , Doenças do Sistema Nervoso/metabolismo , Microbioma Gastrointestinal/fisiologia , Eixo Encéfalo-Intestino/fisiologia
15.
Angew Chem Int Ed Engl ; 62(52): e202313970, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37953692

RESUMO

Covalent organic frameworks (COFs) have been proposed for electrochemical energy storage, although the poor conductivity resulted from covalent bonds limits their practical performance. Here, we propose to introduce noncovalent bonds in COFs through a molecular insertion strategy for improving the conductivity of the COFs as supercapacitor. The synthesized COFs (MI-COFs) establish equilibriums between covalent bonds and noncovalent bonds, which construct a continuous charge transfer channel to enhance the conductivity. The rapid charge transfer rate enables the COFs to activate the redox sites, bringing about excellent electrochemical energy storage behavior. The results show that the MI-COFs exhibit much better performance in specific capacitance and capacity retention rate than those of most COFs-based supercapacitors. Moreover, through simply altering inserted guests, the mode and strength of noncovalent bond can be adjusted to obtain different energy storage characteristics. The introduction of noncovalent bonds is an effective and flexible way to enhance and regulate the properties of COFs, providing a valuable direction for the development of novel COFs-based energy storage materials.

16.
Front Chem ; 11: 1296036, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025077

RESUMO

Fluorescent nanomaterials (NMs) are widely used in imaging techniques in biomedical research. Especially in bioimaging systems, with the rapid development of imaging nanotechnology, precious metal clusters such as Au, Ag, and Cu NMs have emerged with different functional agents for biomedical applications. Compared with traditional fluorescent molecules, precious metal clusters have the advantages of high optical stability, easy regulation of shape and size, and multifunctionalization. In addition, NMs possess strong photoluminescent properties with good photostability, high release rate, and sub-nanometer size. They could be treated as fundamental agents in bioimaging usability. This review summarizes the recent advances in bioimaging utilization, it conveys that metal clusters refer to Au, Ag, and Cu fluorescent clusters and could provide a generalized overview of their full applications. It includes optical property measurement, precious metal clusters in bioimaging systems, and a rare earth element-doped heterogeneous structure illustrated in biomedical imaging with specific examples, that provide new and innovative ideas for fluorescent NMs in the field of bioimaging usability.

17.
Front Immunol ; 14: 1128244, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37818357

RESUMO

Background: Lower-grade glioma (LGG) is a primary intracranial tumor that carry a high risk of malignant transformation and limited therapeutic options. Emerging evidence indicates that the tumor microenvironment (TME) is a superior predictor for tumor progression and therapy response. PLEKHA4 has been demonstrated to be a biomarker for LGG that correlate with immune infiltration. However, the fundamental mechanism by which PLEKHA4 contributes to LGG is still poorly understood. Methods: Multiple bioinformatic tools, including Tumor Immune Estimation Resource (TIMER), Gene Expression Profiling Interactive Analysis (GEPIA2), Shiny Methylation Analysis Resource Tool (SMART), etc., were incorporated to analyze the PLEKHA4. ESTIMATE, ssGSEA, CIBERSORT, TIDE and CellMiner algorithms were employed to determine the association of PLEKHA4 with TME, immunotherapy response and drug sensitivities. Immunohistochemistry (IHC)-based tissue microarrays and M2 macrophage infiltration assay were conducted to verify their associations. Results: PLEKHA4 expression was found to be dramatically upregulated and strongly associated with unfavorable overall survival (OS) and disease-specific survival (DSS) in LGG patients, as well as their poor clinicopathological characteristics. Cox regression analysis identified that PLEKHA4 was an independent prognostic factor. Methylation analysis revealed that DNA methylation correlates with PLEKHA4 expression and indicates a better outcome in LGG. Moreover, PLEKHA4 was remarkably correlated with immune responses and TME remodeling, as evidenced by its positive correlation with particular immune marker subsets and the putative infiltration of immune cells. Surprisingly, the proportion of M2 macrophages in TME was strikingly higher than others, inferring that PLEKHA4 may regulate the infiltration and polarization of M2 macrophages. Evidence provided by IHC-based tissue microarrays and M2 macrophage infiltration assay further validated our findings. Moreover, PLEKHA4 expression was found to be significantly correlated with chemokines, interleukins, and their receptors, further supporting the critical role of PLEKHA4 in reshaping the TME. Additionally, we found that PLEKHA4 expression was closely associated with drug sensitivities and immunotherapy responses, indicating that PLEKHA4 expression also had potential clinical significance in guiding immunotherapy and chemotherapy in LGG. Conclusion: PLEKHA4 plays a pivotal role in reshaping the TME of LGG patients, and may serve as a potential predictor for LGG prognosis and therapy.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Prognóstico , Microambiente Tumoral , Glioma/genética , Neoplasias Encefálicas/genética , Algoritmos
18.
Viruses ; 15(10)2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37896778

RESUMO

Although the involvement of the ubiquitin-proteasome system (UPS) in several coronavirus-productive infections has been reported, whether the UPS is required for infectious bronchitis virus (IBV) and porcine epidemic diarrhea virus (PEDV) infections is unclear. In this study, the role of UPS in the IBV and PEDV life cycles was investigated. When the UPS was suppressed by pharmacological inhibition at the early infection stage, IBV and PEDV infectivity were severely impaired. Further study showed that inhibition of UPS did not change the internalization of virus particles; however, by using R18 and DiOC-labeled virus particles, we found that inhibition of UPS prevented the IBV and PEDV membrane fusion with late endosomes or lysosomes. In addition, proteasome inhibitors blocked the degradation of the incoming viral protein N, suggesting the uncoating process and genomic RNA release were suppressed. Subsequently, the initial translation of genomic RNA was blocked. Thus, UPS may target the virus-cellular membrane fusion to facilitate the release of incoming viruses from late endosomes or lysosomes, subsequently blocking the following virus uncoating, initial translation, and replication events. Similar to the observation of proteasome inhibitors, ubiquitin-activating enzyme E1 inhibitor PYR-41 also impaired the entry of IBV, enhanced the accumulation of ubiquitinated proteins, and depleted mono-ubiquitin. In all, this study reveals an important role of UPS in coronavirus entry by preventing membrane fusion and identifies UPS as a potential target for developing antiviral therapies for coronavirus.


Assuntos
Infecções por Coronavirus , Coronavirus , Vírus da Diarreia Epidêmica Suína , Animais , Suínos , Complexo de Endopeptidases do Proteassoma/metabolismo , Linhagem Celular , Ubiquitina/metabolismo , Coronavirus/genética , Inibidores de Proteassoma/farmacologia , Fusão de Membrana , Endossomos/metabolismo , Vírus da Diarreia Epidêmica Suína/genética , RNA , Replicação Viral
19.
Open Life Sci ; 18(1): 20220476, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37588998

RESUMO

This study aimed to investigate whether α-fetoprotein (AFP) could affect the malignant behavior of AFP-producing gastric cancer (AFP-GC) and to explore the relationship between AFP and mesenchymal-epithelial transition factor (c-Met) in AFP-GC. In this study, 23 patients with AFP-GC (AFP[+]) and 18 patients with common gastric cancer (AFP[-]) were evaluated for the c-Met expression using immunohistochemical analysis. The AFP-GC cell line, GCIY, was used. The AFP endoribonuclease-prepared small interfering RNA (siRNA) and eukaryotic AFP overexpression vector were used to increase/knockdown the expression of AFP. Afterward, the c-Met expression was evaluated by polymerase chain reaction and western blot. The proliferation, migration, and invasion of GCIY cells were estimated before and after the AFP overexpression/knockdown. The c-Met expression in both groups was the same (p > 0.05), and AFP[+] group had a higher positive incidence of the c-Met expression than the AFP[-] group (p < 0.01). Furthermore, the c-Met expression frequency was decreased by AFP knockdown and increased by AFP overexpression (p < 0.01). The cell counting kit-8 cell proliferation assay, cell invasion, and migration assays confirmed that the AFP could affect the malignant biological behavior of AFP-GC. These findings suggest that AFP contributes to the malignant biological properties of AFP-GC and the high expression of c-Met in AFP-GC.

20.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123257, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37591019

RESUMO

Work to combat counterfeiting has always been crucial to defending the interests of the public. The usual anti-counterfeiting marks are now fundamental and easy to imitate. Therefore, it is more beneficial to anti-counterfeiting work to develop an anti-counterfeiting mark with more variations to make forgery more difficult. Due to its exceptional stability and fluorescence variability, carbon dots (CDs), a newly developed fluorescent material, offer a wide range of potential applications in anti-counterfeiting. However, there currently needs to be more CD applications in multi-level anti-counterfeiting, and additional issues include high cost and environmental contamination. Therefore, considering the problems of green environmental protection and cost, CDs with excellent green (530 nm) and blue (475 nm, 486 nm) luminescence properties were prepared by a one-step reaction of m-phenylenediamine and glucose. The average fluorescence lifespan is longer than 5 ns, and the optimal quantum yield can reach 37%. Due to the large number of protonated amino groups and surface carboxyl functional groups, the prepared carbon dots exhibit green and blue fluorescence emission modes under acidic and alkaline conditions, respectively. Based on this situation, we produced CD ink and successfully used it for multi-level anti-counterfeiting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA