Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Anaesthesiologie ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575771

RESUMO

BACKGROUND: Delayed extubation and transfer to the intensive care unit (ICU) in children undergoing major scoliosis surgery may increase postoperative complications, prolong hospital stay, and increase medical expenses; however, whether a child will require delayed extubation or transfer to the ICU after scoliosis orthopedic surgery is not fully understood. In this study, we reviewed the risk factors for delayed extubation and transfer to the ICU after scoliosis orthopedic surgery in children. METHOD: The electronic medical records of pediatric patients (≤ 18 years) who underwent posterior spinal fusion surgery between January 2018 and November 2021 were reviewed and analyzed. Patient characteristics (age, sex, body mass index, American Society of Anesthesiologists, ASA, grade, preoperative lung function, and congenital heart disease), preoperative Cobb angle, scoliosis type, correction rate, vertebral fusion segments, pedicle screws, surgical osteotomy, intraoperative bleeding, intraoperative allogeneic transfusion, intraoperative hemoglobin changes, intraoperative mean arterial pressure changes, intraoperative tidal volume (ml/kg predicted body weight), surgical time, postoperative extubation, and transfer to the ICU were collected. The primary outcomes were delayed extubation and transfer to the ICU. Multivariate logistic regression models were used to determine the risk factors for delayed extubation and ICU transfer. RESULTS: A total of 246 children who satisfied the inclusion criteria were enrolled in this study, of whom 23 (9.3%) had delayed extubation and 81 (32.9%) were transferred to the ICU after surgery. High ASA grade (odds ratio [OR] 5.42; 95% confidence interval [CI] 1.49-19.78; p = 0.010), high Cobb angle (OR 1.04; 95% CI 1.02-1.07; p < 0.001), moderate to severe pulmonary dysfunction (OR 10.9; 95% CI 2.00-59.08; p = 0.006) and prolonged surgical time (OR 1.01; 95% CI 1.00-1.03; p = 0.040) were risk factors for delayed extubation. A high Cobb angle (OR 1.02; 95% CI 1.01-1.04; p = 0.004), high intraoperative bleeding volume (OR 1.06; 95% CI 1.03-1.10; p = 0.001), allogeneic transfusion (OR 3.30; 95% CI 1.24-8.83; p = 0.017) and neuromuscular scoliosis (OR 5.38; 95% CI 1.59-18.25; p = 0.007) were risk factors for transfer to the ICU. A high Cobb angle was a risk factor for both delayed extubation and ICU transfer. Age, sex, body mass index, number of vertebral fusion segments, correction rate, and intraoperative tidal volume were not associated with delayed postoperative extubation and ICU transfer. CONCLUSION: The most common risk factor for delayed extubation and ICU transfer in pediatric patients who underwent posterior spinal fusion was a high Cobb angle. Determining risk factors for a poor prognosis may help optimize perioperative respiratory management strategies and planning of postoperative care for children undergoing complicated spinal surgery.

2.
Heliyon ; 10(4): e26594, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38420373

RESUMO

Background: Atelectasis is a commonly observed postoperative complication of general anesthesia in children. Pulmonary protective ventilation strategies have been reported to have a beneficial effect on postoperative atelectasis in children. Therefore, the present study aimed to evaluate the efficacy of the ultrasound-guided transversus abdominis plane (TAP) block technique in preventing the incidence of postoperative atelectasis in children. Materials and methods: This study enrolled 100 consecutive children undergoing elective laparoscopic bilateral hernia repair and randomly divided them into the control and TAP groups. Conventional lung-protective ventilation was initiated in both groups after the induction of general anesthesia. The children in the TAP group received an ultrasound-guided TAP block with 0.3 mL/kg of 0.5% ropivacaine after the induction of anesthesia. Results: Anesthesia-induced atelectasis was observed in 24% and 84% of patients in the TAP (n = 50) and control (n = 50) groups, respectively, before discharge from the post-anesthetic care unit (T3; PACU) (odds ratio [OR], 0.062; 95% confidence interval [CI], 0.019-0.179; P < 0.001). No significant difference was observed between the control and TAP groups in terms of the lung ultrasonography (LUS) scores 5 min after endotracheal intubation (T1). However, the LUS scores were lower in the TAP group than those in the control group at the end of surgery (T2, P < 0.01) and before discharge from the PACU (T3, P < 0.001). Moreover, the ace, legs, activity, cry and consolability (FLACC) pain scores in the TAP group were lower than those in the control group at each postoperative time point. Conclusion: Ultrasound-guided TAP block effectively reduced the incidence of postoperative atelectasis and alleviated pain in children undergoing laparoscopic surgery.

3.
Ann Med Surg (Lond) ; 86(2): 643-649, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38333301

RESUMO

Introduction and importance: There is no expert consensus or guidance on perioperative anaesthesia management for spinal surgery of spinal muscular atrophy (SMA) patients with severe scoliosis (Cobb≧90°). We provide a comprehensive summary of the perioperative characteristics observed in patients with SMA and propose an optimized perioperative management strategy for anaesthesia. Methods: This study is a retrospective single-centre research. Twenty-six SMA patients with severe scoliosis underwent posterior spinal fusion surgery from September 2019 to September 2022 were enroled. The main outcomes were to show the patients' characteristics in anaesthesia, intra- and post-operative periods. Outcomes: Nineteen patients underwent awake transnasal/transairway intubation. The median anaesthesia time of 25 patients treated under total intravenous anaesthesia was 425 min. After operation, the Cobb angle and correction rate in the coronal plane were median 54.0° and 54.4%. The length of mechanical ventilation with endotracheal intubation in ICU was median 17.5 h in 8 patients. The ICU length of stay of postoperative hospital was median 19 days. Postoperative pneumonia developed in nine patients, atelectasis in two patients, and pleural effusion in six patients. All patients did not need special oxygen therapy after discharge. Conclusion: Multidisciplinary consultation, lung-protective ventilation strategy, appropriate anaesthetic drugs and reasonable blood transfusion scheme and postoperative monitoring were important in anaesthesia, intraoperative and postoperative periods in the patients of severe scoliosis with spinal muscular atrophy.

4.
Adv Mater ; 36(11): e2310532, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38095435

RESUMO

Metallo-ß-lactamases (MBLs) represent a prevalent resistance mechanism in Gram-negative bacteria, rendering last-line carbapenem-related antibiotics ineffective. Here, a bioresponsive sliver peroxide (Ag2 O2 )-based nanovesicle, named Ag2 O2 @BP-MT@MM, is developed as a broad-spectrum MBL inhibitor for combating MBL-producing bacterial pneumonia. Ag2 O2 nanoparticle is first orderly modified with bovine serum albumin and polydopamine to co-load meropenem (MER) and [5-(p-fluorophenyl)-2-ureido]-thiophene-3-carboxamide (TPCA-1) and then encapsulated with macrophage membrane (MM) aimed to target inflammatory lung tissue specifically. The resultant Ag2 O2 @BP-MT@MM effectively abrogates MBL activity by displacing the Zn2+ cofactor in MBLs with Ag+ and displays potent bactericidal and anti-inflammatory properties, specific targeting abilities, and great bioresponsive characteristics. After intravenous injection, the nanoparticles accumulate prominently at infection sites through MM-mediated targeting . Ag+ released from Ag2 O2 decomposition at the infection sites effectively inhibits MBL activity and overcomes the resistance of MBL-producing bacteria to MER, resulting in synergistic elimination of bacteria in conjunction with MER. In two murine infection models of NDM-1+ Klebsiella pneumoniae-induced severe pneumonia and NDM-1+ Escherichia coli-induced sepsis-related bacterial pneumonia, the nanoparticles significantly reduce bacterial loading, pro-inflammatory cytokine levels locally and systemically, and the recruitment and activation of neutrophils and macrophages. This innovative approach presents a promising new strategy for combating infections caused by MBL-producing carbapenem-resistant bacteria.


Assuntos
Pneumonia Bacteriana , Inibidores de beta-Lactamases , Animais , Camundongos , Inibidores de beta-Lactamases/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Meropeném/farmacologia , Carbapenêmicos/farmacologia , beta-Lactamases , Pneumonia Bacteriana/tratamento farmacológico , Testes de Sensibilidade Microbiana
6.
Nat Commun ; 14(1): 4438, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488114

RESUMO

Catalytic dynamic kinetic asymmetric transformation (DyKAT) provides a powerful tool to access chiral stereoisomers from racemic substrates. Such transformation has been widely employed on the construction of central chirality, however, the application in axial chirality remains underexplored because its equilibrium of substrate enantiomers is limited to five-membered metalacyclic intermediate. Here we report a tetracoordinate boron-directed dynamic kinetic asymmetric cross-coupling of racemic, configurationally stable 3-bromo-2,1-azaborines with boronic acid derivatives. A series of challenging C-B axially chiral compounds were prepared with generally good to excellent enantioselectivities. Moreover, this transformation can also be extended to prepare atropisomers bearing adjacent C-B and C-C diaxes with excellent diastereo- and enantio-control. The key to the success relies on the rational design of a reversible tetracoordinate boron intermediate, which is supported by theoretical calculations that dramatically reduces the rotational barrier of the original C-B axis and achieves the goal of DyKAT.

7.
Crit Care ; 27(1): 196, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37218012

RESUMO

BACKGROUND: Ventilator-induced lung injury (VILI) is caused by overdistension of the alveoli by the repetitive recruitment and derecruitment of alveolar units. This study aims to investigate the potential role and mechanism of fibroblast growth factor 21 (FGF21), a metabolic regulator secreted by the liver, in VILI development. METHODS: Serum FGF21 concentrations were determined in patients undergoing mechanical ventilation during general anesthesia and in a mouse VILI model. Lung injury was compared between FGF21-knockout (KO) mice and wild-type (WT) mice. Recombinant FGF21 was administrated in vivo and in vitro to determine its therapeutic effect. RESULTS: Serum FGF21 levels in patients and mice with VILI were significantly higher than in those without VILI. Additionally, the increment of serum FGF21 in anesthesia patients was positively correlated with the duration of ventilation. VILI was aggravated in FGF21-KO mice compared with WT mice. Conversely, the administration of FGF21 alleviated VILI in both mouse and cell models. FGF21 reduced Caspase-1 activity, suppressed the mRNA levels of Nlrp3, Asc, Il-1ß, Il-18, Hmgb1 and Nf-κb, and decreased the protein levels of NLRP3, ASC, IL-1ß, IL-18, HMGB1 and the cleaved form of GSDMD. CONCLUSIONS: Our findings reveal that endogenous FGF21 signaling is triggered in response to VILI, which protects against VILI by inhibiting the NLRP3/Caspase-1/GSDMD pyroptosis pathway. These results suggest that boosting endogenous FGF21 or the administration of recombinant FGF21 could be promising therapeutic strategies for the treatment of VILI during anesthesia or critical care.


Assuntos
Proteína HMGB1 , Lesão Pulmonar Induzida por Ventilação Mecânica , Animais , Camundongos , Caspase 1/metabolismo , Modelos Animais de Doenças , Inflamassomos , Interleucina-18 , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/tratamento farmacológico , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Humanos
8.
CNS Neurosci Ther ; 29(1): 239-255, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36261870

RESUMO

AIMS: There is growing evidence that the gut microbiota plays a significant part in the pathophysiology of chronic stress. The dysbiosis of the gut microbiota closely relates to dysregulation of microbiota-host cometabolism. Composition changes in the gut microbiota related to perturbations in metabolic profiles are vital risk factors for disease development. Hyperbaric oxygen therapy is commonly applied as an alternative or primary therapy for various diseases. Therefore, a metabolic and gut bacteria perspective is essential to uncover possible mechanisms of chronic stress and the therapeutic effect of hyperbaric oxygenation. We determined that there were significantly disturbed metabolites and disordered gut microbiota between control and chronic stress group. The study aims to offer further information on the interactions between host metabolism, gut microbiota, and chronic stress. METHODS: At present, chronic unpredictable mild stress is considered the most widespread method of modeling chronic stress in animals, so we used a chronic unpredictable mild stress mouse model to characterize changes in the metabolome and microbiome of depressed mice by combining 16S rRNA gene sequencing and UHPLC-MS/MS-based metabolomics. Pearson's correlation-based clustering analysis was performed with above metabolomics and fecal microbiome data to determine gut microbiota-associated metabolites. RESULTS: We found that 18 metabolites showed a significant correlation with campylobacterota. Campylobacterota associated metabolites were significantly enriched mainly in the d-glutamate and d-glutamine metabolism. Hyperoxia treatment may improve depression-like behaviors in chronic stress model mice through regulating the disrupted metabolites. CONCLUSIONS: Hyperbaric oxygen improves depression-like behaviors in chronic stress model mice by remodeling Campylobacterota associated metabolites.


Assuntos
Microbioma Gastrointestinal , Oxigenoterapia Hiperbárica , Camundongos , Animais , Depressão/terapia , Depressão/metabolismo , RNA Ribossômico 16S/genética , Espectrometria de Massas em Tandem
9.
Mol Pharm ; 19(11): 4254-4263, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36173129

RESUMO

Sepsis is a global disease burden, and approximately 40% of cases develop acute lung injury (ALI). Bone marrow mesenchymal stromal cells (BMSCs) and their exosomes are widely used in treating a variety of diseases including sepsis. As an acute phase protein, serum amyloid A1 (SAA1) regulates inflammation and immunity. However, the role of SAA1 in BMSCs-exosomes in septic lung injury remains to be elucidated. Exosomes derived from serum and BMSCs were isolated by ultracentrifugation. SAA1 was silenced or overexpressed in mouse BMSCs using lentiviral plasmids, containing either SAA1-targeting short interfering RNAs or SAA1 cDNA. Sepsis was induced by cecal ligation and puncture (CLP). LPS was used to induce ALI in mice. Mouse alveolar macrophages were isolated by flow cytometry. Levels of SAA1, endotoxin, TNF-α, and IL-6 were measured using commercial kits. LPS internalization was monitored by immunostaining. RT-qPCR or immunoblots were performed to test gene and protein expressions. Serum exosomes of patients with sepsis-induced lung injury had significantly higher levels of SAA1, endotoxin, TNF-α, and IL-6. Overexpression of SAA1 in BMSCs inhibited CLP- or LPS-induced lung injury and decreased CLP- or LPS-induced endotoxin, TNF-α, and IL-6 levels. Administration of the SAA1 blocking peptide was found to partially inhibit SAA1-induced LPS internalization by mouse alveolar macrophages and reverse the protective effect of SAA1. In conclusion, BMSCs inhibit sepsis-induced lung injury through exosomal SAA1. These results highlight the importance of BMSCs, exosomes, and SAA1, which may provide novel directions for the treatment of septic lung injury.


Assuntos
Lesão Pulmonar Aguda , Células-Tronco Mesenquimais , Sepse , Proteína Amiloide A Sérica , Animais , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Células da Medula Óssea/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Proteína Amiloide A Sérica/genética , Exossomos
10.
Metabolomics ; 18(8): 66, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35925420

RESUMO

INTRODUCTION: Nowadays,the mechanical ventilation (MV) aims to rest the respiratory muscles while providing adequate gas exchange, and it has been a part of basic life support during general anesthesia as well as in critically ill patients with and without respiratory failure. However, MV itself has the potential to cause or worsen lung injury, which is also known as ventilator-induced lung injury (VILI). Thus, the early diagnosis of VILI is of great importance for the prevention and treatment of VILI. OBJECTIVE: This study aimed to investigate the metabolomes in the lung and plasma of mice receiving mechanical ventilation (MV). METHODS: Healthy mice were randomly assigned into control group; (2) high volume tidal (HV) group (30 ml/kg); (3) low volume tidal (LV) group (6 ml/kg). After ventilation for 4 h, mice were sacrificed and the lung tissue and plasma were collected. The lung and plasma were processed for the metabolomics analysis. We also performed histopathological examination on the lung tissue. RESULTS: We detected moderate inflammatory damage with alveolar septal thickening in the HV group compared with the normal and LV groups.The metabolomics analysis results showed MV altered the metabolism which was characterized by the dysregulation of γ-amino butyric acid (GABA) system and urea cycle (desregulations in plasma and lung guanidinosuccinic acid, argininosuccinic acid, succinic acid semialdehyde and lung GABA ), Disturbance of citric acid cycle (CAC) (increased plasma glutamine and lung phosphoenol pyruvate) and redox imbalance (desregulations in plasma and/or lung ascorbic acid, chenodeoxycholic acid, uric acid, oleic acid, stearidonic acid, palmitoleic acid and docosahexaenoic acid). Moreover, the lung and plasma metabolomes were also significantly different between LV and HV groups. CONCLUSIONS: Some lung and plasma metabolites related to the GABA system and urea cycle, citric acid cycle and redox balance were significantly altered, and they may be employed for the evaluation of VILI and serve as targets in the treatment of VILI.


Assuntos
Metabolômica , Lesão Pulmonar Induzida por Ventilação Mecânica , Animais , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ureia/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Ácido gama-Aminobutírico/metabolismo
11.
Bioengineered ; 13(3): 6048-6060, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35184642

RESUMO

Chronic stress refers to nonspecific systemic reactions under the over-stimulation of different external and internal factors for a long time. Previous studies confirmed that chronic psychological stress had a negative effect on almost all tissues and organs. We intended to further identify potential gene targets related to the pathogenesis of chronic stress-induced consequences involved in different diseases. In our study, mice in the model group lived under the condition of chronic unpredictable mild stress (CUMS) until they expressed behaviors like depression which were supposed to undergo chronic stress. We applied high-throughput RNA sequencing to assess mRNA expression and obtained transcription profiles in lung tissue from CUMS mice and control mice for analysis. In view of the prediction of high-throughput RNA sequences and bioinformatics software, and mRNA regulatory network was constructed. First, we conducted differentially expressed genes (DEGs) and obtained 282 DEGs between CUMS (group A) and the control model (group B). Then, we conducted functional and pathway enrichment analyses. In general, the function of upregulated regulated DEGs is related to immune and inflammatory responses. PPI network identified several essential genes, of which ten hub genes were related to the T cell receptor signaling pathway. qRT-PCR results verified the regulatory network of mRNA. The expressions of CD28, CD3e, and CD247 increased in mice with CUMS compared with that in control. This illustrated immune pathways are related to the pathological molecular mechanism of chronic stress and may provide information for identifying potential biomarkers and early detection of chronic stress.


Assuntos
Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Animais , Biomarcadores , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Camundongos , RNA Mensageiro
14.
J Am Chem Soc ; 143(27): 10048-10053, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34180660

RESUMO

Compared with the well-developed centrally chiral boron chemistry, C-B axially chiral chemistry remains elusive and challenging. Herein we report the first atroposelective Miyaura borylation of bromoarenes with unsymmetrical diboron reagents for the direct catalytic synthesis of optically active atropisomeric arylborons. This reaction features broad substrate scope and produces axially chiral arylborons with high yields and good enantioselectivities.

15.
Oxid Med Cell Longev ; 2021: 8889313, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33628393

RESUMO

Dysregulation of matrix metalloproteinase- (MMP-) 9 is implicated in the pathogenesis of acute lung injury (ALI). However, it remains controversial whether MMP-9 improves or deteriorates acute lung injury of different etiologies. The receptor for advanced glycation end products (RAGE) plays a critical role in the pathogenesis of acute lung injury. MMPs are known to mediate RAGE shedding and release of soluble RAGE (sRAGE), which can act as a decoy receptor by competitively inhibiting the binding of RAGE ligands to RAGE. Therefore, this study is aimed at clarifying whether and how pulmonary knockdown of MMP-9 affected sepsis-induced acute lung injury as well as the release of sRAGE in a murine cecal ligation and puncture (CLP) model. The analysis of GEO mouse sepsis datasets GSE15379, GSE52474, and GSE60088 revealed that the mRNA expression of MMP-9 was significantly upregulated in septic mouse lung tissues. Elevation of pulmonary MMP-9 mRNA and protein expressions was confirmed in CLP-induced mouse sepsis model. Intratracheal injection of MMP-9 siRNA resulted in an approximately 60% decrease in pulmonary MMP-9 expression. It was found that pulmonary knockdown of MMP-9 significantly increased mortality of sepsis and exacerbated sepsis-associated acute lung injury. Pulmonary MMP-9 knockdown also decreased sRAGE release and enhanced sepsis-induced activation of the RAGE/nuclear factor-κB (NF-κB) signaling pathway, meanwhile aggravating sepsis-induced oxidative stress and inflammation in lung tissues. In addition, administration of recombinant sRAGE protein suppressed the activation of the RAGE/NF-κB signaling pathway and ameliorated pulmonary oxidative stress, inflammation, and lung injury in CLP-induced septic mice. In conclusion, our data indicate that MMP-9-mediated RAGE shedding limits the severity of sepsis-associated pulmonary edema, inflammation, oxidative stress, and lung injury by suppressing the RAGE/NF-κB signaling pathway via the decoy receptor activities of sRAGE. MMP-9-mediated sRAGE production may serve as a self-limiting mechanism to control and resolve excessive inflammation and oxidative stress in the lung during sepsis.


Assuntos
Lesão Pulmonar Aguda/etiologia , Metaloproteinase 9 da Matriz/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Sepse/complicações , Regulação para Cima , Animais , Ceco , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Inflamação/patologia , Ligadura , Pulmão/patologia , Masculino , Camundongos Endogâmicos ICR , NF-kappa B/metabolismo , Punções , Transdução de Sinais , Solubilidade
16.
J Cell Mol Med ; 25(8): 4124-4135, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33624364

RESUMO

Thrombocytopenia is independently related with increased mortality in severe septic patients. Renin-angiotensin system (RAS) is elevated in septic subjects; accumulating studies show that angiotensin II (Ang II) stimulate the intrinsic apoptosis pathway by promoting reactive oxygen species (ROS) production. However, the mechanisms underlying the relationship of platelet apoptosis and RAS system in sepsis have not been fully elucidated. The present study aimed to elucidate whether the RAS was involved in the pathogenesis of sepsis-associated thrombocytopenia and explore the underlying mechanisms. We found that elevated plasma Ang II was associated with decreased platelet count in both patients with sepsis and experimental animals exposed to lipopolysaccharide (LPS). Besides, Ang II treatment induced platelet apoptosis in a concentration-dependent manner in primary isolated platelets, which was blocked by angiotensin II type 1 receptor (AT1R) antagonist losartan, but not by angiotensin II type 2 receptor (AT2R) antagonist PD123319. Moreover, inhibiting AT1R by losartan attenuated LPS-induced platelet apoptosis and alleviated sepsis-associated thrombocytopenia. Furthermore, Ang II treatment induced oxidative stress level in a concentration-dependent manner in primary isolated platelets, which was partially reversed by the AT1R antagonist losartan. The present study demonstrated that elevated Ang II directly stimulated platelet apoptosis through promoting oxidative stress in an AT1R-dependent manner in sepsis-associated thrombocytopenia. The results would helpful for understanding the role of RAS system in sepsis-associated thrombocytopenia.


Assuntos
Angiotensina II/farmacologia , Apoptose , Plaquetas/patologia , Estresse Oxidativo , Receptor Tipo 1 de Angiotensina/metabolismo , Sepse/complicações , Trombocitopenia/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Estudos de Casos e Controles , Proliferação de Células , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Prognóstico , Espécies Reativas de Oxigênio/metabolismo , Receptor Tipo 1 de Angiotensina/química , Receptor Tipo 1 de Angiotensina/genética , Transdução de Sinais , Trombocitopenia/etiologia , Trombocitopenia/metabolismo
17.
J Exp Bot ; 72(10): 3540-3553, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33606883

RESUMO

MicroRNA319a (miR319a) controls cell division arrest in plant leaves by inhibiting the expression of TCP (TEOSINTE BRANCHED 1/CYCLOIDEA/PCF) family genes. However, it is unclear whether miR319a influences infection by necrotrophic pathogens and host susceptibility. In this study, we revealed that miR319a affects plant resistance to stem rot disease caused by Sclerotinia sclerotiorum. In Brassica rapa plants infected with S. sclerotiorum, miR319a levels increased while the expression levels of several BraTCP genes significantly decreased compared with those of uninfected plants. Overexpression of BraMIR319a in B. rapa increased the susceptibility of the plants to S. sclerotiorum and aggravated stem rot disease, whereas overexpression of BraTCP4-1 promoted plant resistance. RNA sequencing data revealed a potential relationship between miR319a and pathogen-related WRKY genes. Chromatin immunoprecipitation, electrophoretic mobility shift, and reporter transaction assays showed that BraTCP4-1 could bind to the promoters of WRKY75, WRKY70, and WRKY33 and directly activate these pathogen-related genes. Moreover, the expression levels of WRKY75, WRKY70, and WRKY33 in plants overexpressing BraMIR319a decreased significantly, whereas those of plants overexpressing BraTCP4-1 increased significantly, relative to the wild type. These results suggest that miR319a and its target gene BraTCP4 control stem rot resistance through pathways of WRKY genes.


Assuntos
Ascomicetos/patogenicidade , Brassica rapa/genética , Resistência à Doença , MicroRNAs , Doenças das Plantas , Brassica rapa/microbiologia , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , RNA de Plantas
18.
Theranostics ; 11(6): 2505-2521, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33456556

RESUMO

Rationale: The lung-protective effects of dopamine and its role in the pathology of ventilator-induced lung injury (VILI) are emerging. However, the underlying mechanisms are still largely unknown. Objective: To investigate the contribution of dopamine receptor dysregulation in the pathogenesis of VILI and therapeutic potential of dopamine D1 receptor (DRD1) agonist in VILI. Methods: The role of dopamine receptors in mechanical stretch-induced endothelial barrier dysfunction and lung injury was studied in DRD1 knockout mice, in isolated mouse lung vascular endothelial cells (MLVECs), and in lung samples from patients who underwent pulmonary lobectomy with mechanical ventilation for different time periods. Measurements and Main Results: DRD1 was downregulated in both surgical patients and mice exposed to mechanical ventilation. Prophylactic administration of dopamine or DRD1 agonist attenuated mechanical stretch-induced lung endothelial barrier dysfunction and lung injury. By contrast, pulmonary knockdown or global knockout of DRD1 exacerbated these effects. Prophylactic administration of dopamine attenuated mechanical stretch-induced α-tubulin deacetylation and subsequent endothelial hyperpermeability through DRD1 signaling. We identified that cyclic stretch-induced glycogen-synthase-kinase-3ß activation led to phosphorylation and activation of histone deacetylase 6 (HDAC6), which resulted in deacetylation of α-tubulin. Upon activation, DRD1 signaling attenuated mechanical stretch-induced α-tubulin deacetylation and subsequent lung endothelial barrier dysfunction through cAMP/exchange protein activated by cAMP (EPAC)-mediated inactivation of HDAC6. Conclusions: This work identifies a novel protective role for DRD1 against mechanical stretch-induced lung endothelial barrier dysfunction and lung injury. Further study of the mechanisms involving DRD1 in the regulation of microtubule stability and interference with DRD1/cAMP/EPAC/HDAC6 signaling may provide insight into therapeutic approaches for VILI.


Assuntos
Regulação para Baixo/fisiologia , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Pulmão/metabolismo , Receptores de Dopamina D1/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Animais , AMP Cíclico/metabolismo , Desacetilase 6 de Histona/metabolismo , Humanos , Camundongos , Camundongos Knockout , Respiração Artificial/métodos , Transdução de Sinais/fisiologia , Estresse Mecânico , Tubulina (Proteína)/metabolismo
19.
Front Endocrinol (Lausanne) ; 11: 593179, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488517

RESUMO

Background: The majority of the critically ill patients may have critical illness-related corticosteroid insufficiency (CIRCI). The therapeutic effect of dexamethasone may be related to its ability to improve cortical function. Recent study showed that dexamethasone can reduce COVID-19 deaths by up to one third in critically ill patients. The aim of this article is to investigate whether SARS-CoV-2 can attack the adrenal cortex to aggravate the relative adrenal insufficiency. Methods: We summarized the clinical features of COVID-19 reported in currently available observational studies. ACE2 and TMPRSS2 expression was examined in human adrenal glands by immunohistochemical staining. We retrospectively analyzed serum cortisol levels in critically ill patients with or without COVID-19. Results: High percentage of critically ill patients with SARS-COV-2 infection in the study were treated with vasopressors. ACE2 receptor and TMPRSS2 serine protease were colocalized in adrenocortical cells in zona fasciculata and zona reticularis. We collected plasma cortisol concentrations in nine critically ill patients with COVID-19. The cortisol levels of critically ill patients with COVID-19 were lower than those in non-COVID-19 critically ill group. Six of the nine COVID-19 critically ill patients had random plasma cortisol concentrations below 10 µg/dl, which met the criteria for the diagnosis of CIRCI. Conclusion: We demonstrate that ACE2 and TMPRSS2 are colocalized in adrenocortical cells, and that the cortisol levels are lower in critically ill patients with COVID-19 as compared to those of non-COVID-19 critically ill patients. Based on our findings, we recommend measuring plasma cortisol level to guide hormonal therapy.


Assuntos
Doenças do Córtex Suprarrenal/tratamento farmacológico , Doenças do Córtex Suprarrenal/virologia , Córtex Suprarrenal/virologia , COVID-19/virologia , Córtex Suprarrenal/enzimologia , Insuficiência Adrenal/etiologia , Insuficiência Adrenal/terapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Enzima de Conversão de Angiotensina 2/metabolismo , Estado Terminal , Dexametasona/uso terapêutico , Feminino , Humanos , Hidrocortisona/sangue , Masculino , Pessoa de Meia-Idade , Serina Endopeptidases/metabolismo , Vasoconstritores/uso terapêutico , Zona Fasciculada/metabolismo , Zona Reticular/metabolismo , Tratamento Farmacológico da COVID-19
20.
Dev Biol ; 455(1): 10-18, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31301299

RESUMO

The imprinted delta like 1 homolog (DLK1) - thyroxine deiodinase type III (DIO3) locus regulates development and growth. Its imprinting regulation involves two differentially methylated regions (DMRs), intergenic-DMR (IG-DMR) and maternally expressed gene 3-DMR (Meg3-DMR). In mice, a maternal deletion of the IG-DMR leads to LOI in the locus, proving that the IG-DMR is a cis-acting imprinting control region of the locus. However, the Meg3-DMR overlaps with the promoter, exon 1 and intron 1 of the Meg3 gene. Because deletion of the Meg3-DMR inactivates the Meg3 gene, their roles in imprinting regulation of Meg3-DMR mice is unknown. Therefore, we generated two mouse models: Meg3Δ(1-4) and Meg3Δ(2-4), respectively targeting exons 1-4 and exons 2-4 of the Meg3 gene. A maternal deletion of Meg3Δ(1-4) caused embryonic death and LOI in both embryos and placentas, but did not affect methylation status of the IG-DMR. In contrast, mice carrying a maternal deletion of Meg3Δ(2-4) were born normally and did not have LOI. These data indicate that it is the Meg3-DMR, not the Meg3 gene, which regulates imprinting of the Dlk1-Dio3 locus.


Assuntos
Metilação de DNA , Loci Gênicos , Impressão Genômica , RNA Longo não Codificante/genética , Animais , Proteínas de Ligação ao Cálcio/genética , Desenvolvimento Embrionário/genética , Éxons/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Iodeto Peroxidase/genética , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Camundongos Transgênicos , Placenta/metabolismo , Gravidez , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA