Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 630(8016): 392-400, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811741

RESUMO

Organs have a distinctive yet often overlooked spatial arrangement in the body1-5. We propose that there is a logic to the shape of an organ and its proximity to its neighbours. Here, by using volumetric scans of many Drosophila melanogaster flies, we develop methods to quantify three-dimensional features of organ shape, position and interindividual variability. We find that both the shapes of organs and their relative arrangement are consistent yet differ between the sexes, and identify unexpected interorgan adjacencies and left-right organ asymmetries. Focusing on the intestine, which traverses the entire body, we investigate how sex differences in three-dimensional organ geometry arise. The configuration of the adult intestine is only partially determined by physical constraints imposed by adjacent organs; its sex-specific shape is actively maintained by mechanochemical crosstalk between gut muscles and vascular-like trachea. Indeed, sex-biased expression of a muscle-derived fibroblast growth factor-like ligand renders trachea sexually dimorphic. In turn, tracheal branches hold gut loops together into a male or female shape, with physiological consequences. Interorgan geometry represents a previously unrecognized level of biological complexity which might enable or confine communication across organs and could help explain sex or species differences in organ function.


Assuntos
Drosophila melanogaster , Intestinos , Caracteres Sexuais , Traqueia , Animais , Feminino , Masculino , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/fisiologia , Intestinos/anatomia & histologia , Traqueia/anatomia & histologia , Traqueia/fisiologia , Tamanho do Órgão , Músculos/anatomia & histologia , Músculos/fisiologia , Ligantes , Fatores de Crescimento de Fibroblastos/metabolismo , Especificidade da Espécie
2.
Artigo em Inglês | MEDLINE | ID: mdl-38600372

RESUMO

From embryonic development, postnatal growth and adult homeostasis to reparative and disease states, cells and tissues undergo constant changes in genome activity, cell fate, proliferation, movement, metabolism and growth. Importantly, these biological state transitions are coupled to changes in the mechanical and material properties of cells and tissues, termed mechanical state transitions. These mechanical states share features with physical states of matter, liquids and solids. Tissues can switch between mechanical states by changing behavioural dynamics or connectivity between cells. Conversely, these changes in tissue mechanical properties are known to control cell and tissue function, most importantly the ability of cells to move or tissues to deform. Thus, tissue mechanical state transitions are implicated in transmitting information across biological length and time scales, especially during processes of early development, wound healing and diseases such as cancer. This Review will focus on the biological basis of tissue-scale mechanical state transitions, how they emerge from molecular and cellular interactions, and their roles in organismal development, homeostasis, regeneration and disease.

3.
Curr Opin Cell Biol ; 87: 102324, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38290420

RESUMO

Wound repair, the closing of a hole, is inherently a physical process that requires the change of shape of materials, in this case, cells and tissues. Not only is efficient and accurate wound repair critical for restoring barrier function and reducing infection, but it is also critical for restoring the complex three-dimensional architecture of an organ. This re-sculpting of tissues requires the complex coordination of cell behaviours in multiple dimensions, in space and time, to ensure that the repaired structure can continue functioning optimally. Recent evidence highlights the importance of cell and tissue mechanics in 2D and 3D to achieve such seamless wound repair.


Assuntos
Cicatrização
5.
J Microsc ; 291(1): 30-42, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36639864

RESUMO

Multicellular tumour cell spheroids embedded within three-dimensional (3D) hydrogels or extracellular matrices (ECM) are widely used as models to study cancer growth and invasion. Standard methods to embed spheroids in 3D matrices result in random placement in space which limits the use of inverted fluorescence microscopy techniques, and thus the resolution that can be achieved to image molecular detail within the intact spheroid. Here, we leverage UV photolithography to microfabricate PDMS (polydimethylsiloxane) stamps that allow for generation of high-content, reproducible well-like structures in multiple different imaging chambers. Addition of multicellular tumour spheroids into stamped collagen structures allows for precise positioning of spheroids in 3D space for reproducible high-/super-resolution imaging. Embedded spheroids can be imaged live or fixed and are amenable to immunostaining, allowing for greater flexibility of experimental approaches. We describe the use of these spheroid imaging chambers to analyse cell invasion, cell-ECM interaction, ECM alignment, force-dependent intracellular protein dynamics and extension of fine actin-based protrusions with a variety of commonly used inverted microscope platforms. This method enables reproducible, high-/super-resolution live imaging of multiple tumour spheroids, that can be potentially extended to visualise organoids and other more complex 3D in vitro systems.


Assuntos
Neoplasias , Humanos , Neoplasias/diagnóstico por imagem , Esferoides Celulares/patologia , Colágeno , Matriz Extracelular
6.
Cell Rep Methods ; 2(10): 100311, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36313808

RESUMO

Super-resolution microscopy reveals the molecular organization of biological structures down to the nanoscale. While it allows the study of protein complexes in single cells, small organisms, or thin tissue sections, there is currently no versatile approach for ultrastructural analysis compatible with whole vertebrate embryos. Here, we present tissue ultrastructure expansion microscopy (TissUExM), a method to expand millimeter-scale and mechanically heterogeneous whole embryonic tissues, including Drosophila wing discs, whole zebrafish, and mouse embryos. TissUExM is designed for the observation of endogenous proteins. It permits quantitative characterization of protein complexes in various organelles at super-resolution in a range of ∼3 mm-sized tissues using conventional microscopes. We demonstrate its strength by investigating tissue-specific ciliary architecture heterogeneity and ultrastructural defects observed upon ciliary protein overexpression. Overall, TissUExM is ideal for performing ultrastructural studies and molecular mapping in situ in whole embryos.


Assuntos
Microscopia , Peixe-Zebra , Animais , Camundongos , Microscopia/métodos , Drosophila
7.
Nat Immunol ; 23(8): 1169-1182, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35882934

RESUMO

Emergent physical properties of tissues are not readily understood by reductionist studies of their constituent cells. Here, we show molecular signals controlling cellular, physical, and structural properties and collectively determine tissue mechanics of lymph nodes, an immunologically relevant adult tissue. Lymph nodes paradoxically maintain robust tissue architecture in homeostasis yet are continually poised for extensive expansion upon immune challenge. We find that in murine models of immune challenge, cytoskeletal mechanics of a cellular meshwork of fibroblasts determine tissue tension independently of extracellular matrix scaffolds. We determine that C-type lectin-like receptor 2 (CLEC-2)-podoplanin signaling regulates the cell surface mechanics of fibroblasts, providing a mechanically sensitive pathway to regulate lymph node remodeling. Perturbation of fibroblast mechanics through genetic deletion of podoplanin attenuates T cell activation. We find that increased tissue tension through the fibroblastic stromal meshwork is required to trigger the initiation of fibroblast proliferation and restore homeostatic cellular ratios and tissue structure through lymph node expansion.


Assuntos
Fibroblastos , Linfonodos , Animais , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Homeostase , Lectinas Tipo C/metabolismo , Camundongos
8.
Semin Cell Dev Biol ; 130: 1-2, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35659474
9.
Semin Cell Dev Biol ; 120: 160-170, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34092509

RESUMO

Mechanical forces play a central role in shaping tissues during development and maintaining epithelial integrity in homeostasis. In this review, we discuss the roles of mechanical forces in Drosophila development and homeostasis, starting from the interplay of mechanics with cell growth and division. We then discuss several examples of morphogenetic processes where complex 3D structures are shaped by mechanical forces, followed by a closer look at patterning processes. We also review the role of forces in homeostatic processes, including cell elimination and wound healing. Finally, we look at the interplay of mechanics and developmental robustness and discuss open questions in the field, as well as novel approaches that will help tackle them in the future.


Assuntos
Fenômenos Biomecânicos/fisiologia , Homeostase/fisiologia , Animais , Drosophila
10.
Development ; 148(10)2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33999996

RESUMO

Movement of epithelial cells in a tissue occurs through neighbor exchange and drives tissue shape changes. It requires intercellular junction remodeling, a process typically powered by the contractile actomyosin cytoskeleton. This has been investigated mainly in homogeneous epithelia, where intercalation takes minutes. However, in some tissues, intercalation involves different cell types and can take hours. Whether slow and fast intercalation share the same mechanisms remains to be examined. To address this issue, we used the fly eye, where the cone cells exchange neighbors over ∼10 h to shape the lens. We uncovered three pathways regulating this slow mode of cell intercalation. First, we found a limited requirement for MyosinII. In this case, mathematical modeling predicts an adhesion-dominant intercalation mechanism. Genetic experiments support this prediction, revealing a role for adhesion through the Nephrin proteins Roughest and Hibris. Second, we found that cone cell intercalation is regulated by the Notch pathway. Third, we show that endocytosis is required for membrane removal and Notch activation. Taken together, our work indicates that adhesion, endocytosis and Notch can direct slow cell intercalation during tissue morphogenesis.


Assuntos
Adesão Celular/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Endocitose/fisiologia , Receptores Notch/metabolismo , Retina/embriologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Actomiosina/metabolismo , Junções Aderentes/fisiologia , Animais , Padronização Corporal/fisiologia , Moléculas de Adesão Celular Neuronais/metabolismo , Comunicação Celular , Proteínas de Drosophila/genética , Células Epiteliais/citologia , Proteínas do Olho/metabolismo , Adesões Focais/fisiologia , Proteínas de Membrana/metabolismo , Miosina Tipo II/metabolismo , Receptores Notch/genética , Transdução de Sinais/fisiologia
11.
Open Biol ; 11(2): 200360, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33593159

RESUMO

The basement membrane (BM) is a special type of extracellular matrix that lines the basal side of epithelial and endothelial tissues. Functionally, the BM is important for providing physical and biochemical cues to the overlying cells, sculpting the tissue into its correct size and shape. In this review, we focus on recent studies that have unveiled the complex mechanical properties of the BM. We discuss how these properties can change during development, homeostasis and disease via different molecular mechanisms, and the subsequent impact on tissue form and function in a variety of organisms. We also explore how better characterization of BM mechanics can contribute to disease diagnosis and treatment, as well as development of better in silico and in vitro models that not only impact the fields of tissue engineering and regenerative medicine, but can also reduce the use of animals in research.


Assuntos
Membrana Basal/metabolismo , Animais , Membrana Basal/química , Membrana Basal/patologia , Homeostase , Humanos , Fenômenos Mecânicos
12.
Philos Trans R Soc Lond B Biol Sci ; 375(1809): 20190564, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-32829686

RESUMO

Tissue folding is a fundamental process that sculpts a simple flat epithelium into a complex three-dimensional organ structure. Whether it is the folding of the brain, or the looping of the gut, it has become clear that to generate an invagination or a fold of any form, mechanical asymmetries must exist in the epithelium. These mechanical asymmetries can be generated locally, involving just the invaginating cells and their immediate neighbours, or on a more global tissue-wide scale. Here, we review the different mechanical mechanisms that epithelia have adopted to generate folds, and how the use of precisely defined mathematical models has helped decipher which mechanisms are the key driving forces in different epithelia. This article is part of a discussion meeting issue 'Contemporary morphogenesis'.


Assuntos
Embrião de Mamíferos/embriologia , Embrião não Mamífero/embriologia , Células Epiteliais/metabolismo , Morfogênese , Animais , Fenômenos Biomecânicos , Camundongos , Modelos Biológicos , Xenopus
13.
J R Soc Interface ; 17(169): 20200264, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32752998

RESUMO

Wound healing is characterized by the re-epitheliation of a tissue through the activation of contractile forces concentrated mainly at the wound edge. While the formation of an actin purse string has been identified as one of the main mechanisms, far less is known about the effects of the viscoelastic properties of the surrounding cells, and the different contribution of the junctional and cytoplasmic contractilities. In this paper, we simulate the wound healing process, resorting to a hybrid vertex model that includes cell boundary and cytoplasmic contractilities explicitly, together with a differentiated viscoelastic rheology based on an adaptive rest-length. From experimental measurements of the recoil and closure phases of wounds in the Drosophila wing disc epithelium, we fit tissue viscoelastic properties. We then analyse in terms of closure rate and energy requirements the contributions of junctional and cytoplasmic contractilities. Our results suggest that reduction of junctional stiffness rather than cytoplasmic stiffness has a more pronounced effect on shortening closure times, and that intercalation rate has a minor effect on the stored energy, but contributes significantly to shortening the healing duration, mostly in the later stages.


Assuntos
Actinas , Cicatrização , Animais , Citoplasma , Drosophila , Epitélio
14.
Artigo em Inglês | MEDLINE | ID: mdl-32432102

RESUMO

Many epithelial developmental processes like cell migration and spreading, cell sorting, or T1 transitions can be described as planar deformations. As such, they can be studied using two-dimensional tools and vertex models that can properly predict collective dynamics. However, many other epithelial shape changes are characterized by out-of-plane mechanics and three-dimensional effects, such as bending, cell extrusion, delamination, or invagination. Furthermore, during planar cell dynamics or tissue repair in monolayers, spatial intercalation between the apical and basal sides has even been detected. Motivated by this lack of symmetry with respect to the midsurface, we here present a 3D hybrid model that allows us to model differential contractility at the apical, basal or lateral sides. We use the model to study the effects on wound closure of solely apical or lateral contractile contributions and show that an apical purse-string can be sufficient for full closure when it is accompanied by volume preservation.

15.
Curr Biol ; 30(13): 2419-2432.e4, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32413305

RESUMO

Cell divisions are essential for tissue growth. In pseudostratified epithelia, where nuclei are staggered across the tissue, each nucleus migrates apically before undergoing mitosis. Successful apical nuclear migration is critical for planar-orientated cell divisions in densely packed epithelia. Most previous investigations have focused on the local cellular mechanisms controlling nuclear migration. Inter-species and inter-organ comparisons of different pseudostratified epithelia suggest global tissue architecture may influence nuclear dynamics, but the underlying mechanisms remain elusive. Here, we use the developing Drosophila wing disc to systematically investigate, in a single epithelial type, how changes in tissue architecture during growth influence mitotic nuclear migration. We observe distinct nuclear dynamics at discrete developmental stages, as epithelial morphology changes. We use genetic and physical perturbations to show a direct effect of cell density on mitotic nuclear positioning. We find Rho kinase and Diaphanous, which facilitate mitotic cell rounding in confined cell conditions, are essential for efficient apical nuclear movement. Perturbation of Diaphanous causes increasing defects in apical nuclear migration as the tissue grows and cell density increases, and these defects can be reversed by acute physical reduction of cell density. Our findings reveal how the mechanical environment imposed on cells within a tissue alters the molecular and cellular mechanisms adopted by single cells for mitosis.


Assuntos
Núcleo Celular/metabolismo , Drosophila melanogaster/fisiologia , Epitélio/crescimento & desenvolvimento , Mitose , Animais , Drosophila melanogaster/crescimento & desenvolvimento , Células Epiteliais/fisiologia , Feminino , Larva/crescimento & desenvolvimento , Larva/fisiologia , Masculino
16.
Mol Biol Cell ; 31(13): 1370-1379, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32320325

RESUMO

The ability of cells to divide along their longest axis has been proposed to play an important role in maintaining epithelial tissue homeostasis in many systems. Because the division plane is largely set by the position of the anaphase spindle, it is important to understand how spindles become oriented. While several molecules have been identified that play key roles in spindle orientation across systems, most notably Mud/NuMA and cortical dynein, the precise mechanism by which spindles detect and align with the long cell axis remain poorly understood. Here, in exploring the dynamics of spindle orientation in mechanically distinct regions of the fly notum, we find that the ability of cells to properly reorient their divisions depends on local tissue tension. Thus, spindles reorient to align with the long cell axis in regions where isotropic tension is elevated, but fail to do so in elongated cells within the crowded midline, where tension is low, or in regions that have been mechanically isolated from the rest of the tissue via laser ablation. Importantly, these differences in spindle behavior outside and inside the midline can be recapitulated by corresponding changes in tension induced by perturbations that alter nonmuscle myosin II activity. These data lead us to propose that isotropic tension within an epithelium provides cells with a mechanically stable substrate upon which localized cortical motor complexes can act on astral microtubules to orient the spindle.


Assuntos
Drosophila/metabolismo , Miosina Tipo II/metabolismo , Fuso Acromático/metabolismo , Animais , Drosophila/fisiologia , Fenômenos Mecânicos , Miosina Tipo II/química
17.
Bioinformatics ; 36(4): 1314-1316, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31544932

RESUMO

SUMMARY: Here we present EpiGraph, an image analysis tool that quantifies epithelial organization. Our method combines computational geometry and graph theory to measure the degree of order of any packed tissue. EpiGraph goes beyond the traditional polygon distribution analysis, capturing other organizational traits that improve the characterization of epithelia. EpiGraph can objectively compare the rearrangements of epithelial cells during development and homeostasis to quantify how the global ensemble is affected. Importantly, it has been implemented in the open-access platform Fiji. This makes EpiGraph very user friendly, with no programming skills required. AVAILABILITY AND IMPLEMENTATION: EpiGraph is available at https://imagej.net/EpiGraph and the code is accessible (https://github.com/ComplexOrganizationOfLivingMatter/Epigraph) under GPLv3 license. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Software
18.
Curr Opin Cell Biol ; 62: 31-36, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31514044

RESUMO

Tissue repair is essential for all organisms, as it protects the integrity and function of tissues and prevents infections and diseases. It takes place at multiple scales, from macroscopic to microscopic levels. Most mechanisms driving tissue repair rely on the correct polarisation of collective cell behaviours, such as migration and proliferation, and polarisation of cytoskeletal and junctional components. Furthermore, re-establishment and maintenance of cell polarity are fundamental for a tissue to be fully repaired and for withstanding mechanical stress during homeostasis and repair. Recent evidence highlights an important role for the interplay between cell polarity and tissue mechanics that are critical in tissue repair.


Assuntos
Polaridade Celular/fisiologia , Epitélio/fisiopatologia , Animais , Humanos
19.
Nat Phys ; 15(11): 1195-1203, 2019 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-31700525

RESUMO

The collective behaviour of cells in epithelial tissues is dependent on their mechanical properties. However, the contribution of tissue mechanics to wound healing in vivo remains poorly understood. Here we investigate the relationship between tissue mechanics and wound healing in live Drosophila wing imaginal discs and show that by tuning epithelial cell junctional tension, we can systematically alter the rate of wound healing. Coincident with the contraction of an actomyosin purse string, we observe cells flowing past each other at the wound edge by intercalating, reminiscent of molecules in a fluid, resulting in seamless wound closure. Using a cell-based physical model, we predict that a reduction in junctional tension fluidises the tissue through an increase in intercalation rate and corresponding reduction in bulk viscosity, in the manner of an unjamming transition. The resultant fluidisation of the tissue accelerates wound healing. Accordingly, when we experimentally reduce tissue tension in wing discs, intercalation rate increases and wounds repair in less time.

20.
Dev Cell ; 51(3): 299-312.e4, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31607650

RESUMO

Tissue folding is a fundamental process that shapes epithelia into complex 3D organs. The initial positioning of folds is the foundation for the emergence of correct tissue morphology. Mechanisms forming individual folds have been studied, but the precise positioning of folds in complex, multi-folded epithelia is less well-understood. We present a computational model of morphogenesis, encompassing local differential growth and tissue mechanics, to investigate tissue fold positioning. We use the Drosophila wing disc as our model system and show that there is spatial-temporal heterogeneity in its planar growth rates. This differential growth, especially at the early stages of development, is the main driver for fold positioning. Increased apical layer stiffness and confinement by the basement membrane drive fold formation but influence positioning to a lesser degree. The model successfully predicts the in vivo morphology of overgrowth clones and wingless mutants via perturbations solely on planar differential growth in silico.


Assuntos
Drosophila melanogaster/crescimento & desenvolvimento , Epitélio/crescimento & desenvolvimento , Morfogênese , Animais , Membrana Basal/ultraestrutura , Células Clonais , Simulação por Computador , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Epitélio/anatomia & histologia , Epitélio/ultraestrutura , Discos Imaginais/anatomia & histologia , Discos Imaginais/ultraestrutura , Modelos Biológicos , Mutação/genética , Fatores de Tempo , Asas de Animais/anatomia & histologia , Asas de Animais/ultraestrutura , Proteína Wnt1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA