Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
JACS Au ; 3(7): 1902-1910, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37502147

RESUMO

A cluster of several newly occurring mutations on Omicron is found at the ß-core region of the spike protein's receptor-binding domain (RBD), where mutation rarely happened before. Notably, the binding of SARS-CoV-2 to human receptor ACE2 via RBD happens in a dynamic airway environment, where mechanical force caused by coughing or sneezing occurs. Thus, we used atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS) to measure the stability of RBDs and found that the mechanical stability of Omicron RBD increased by ∼20% compared with the wild type. Molecular dynamics (MD) simulations revealed that Omicron RBD showed more hydrogen bonds in the ß-core region due to the closing of the α-helical motif caused primarily by the S373P mutation. In addition to a higher unfolding force, we showed a higher dissociation force between Omicron RBD and ACE2. This work reveals the mechanically stabilizing effect of the conserved mutation S373P for Omicron and the possible evolution trend of the ß-core region of RBD.

2.
Food Chem Toxicol ; 176: 113800, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37100235

RESUMO

LPM6690061 is a novel compound with 5-HT2A receptor antagonist and inverse agonist activities. To support the clinical trial and marketing application of LPM6690061, a series of pharmacology and toxicology studies have been conducted. In vitro and in vivo pharmacology studies showed that LPM6690061 had high inverse agonism and antagonism activities against human 5-HT2A receptors, and demonstrated significant antipsychotic-like effects in two rat models: the DOI-induced head-twitch model and the MK-801-induced hyperactivity model, which was more effective than the control drug pimavanserin. LPM6690061 did not have detectable side effects on the neurobehavioral activities and respiratory function in rats, or on the ECG or blood pressure in dogs at the doses of 2 and 6 mg/kg. The half maximal inhibitory concentration (IC50) of LPM6690061 for inhibiting hERG current was 1.02 µM. Three in vivo toxicology studies were conducted. In the single dose toxicity study in rats and dogs, the maximum tolerated dose of LPM6690061 was 100 mg/kg. In the 4-week repeat dose toxicity study in rats, the main detectable toxic reactions of LPM6690061 included moderate artery wall hypertrophy, minimal to mild mixed cell inflammation and increased macrophages in the lung, which generally recovered after a 4-week drug withdrawal period. In the 4-week repeat dose toxicity study in dogs, no detectable toxicity was observed. The doses of no-observed-adverse-effect-level (NOAEL) in rats and dogs were 10 mg/kg and 20 mg/kg, respectively. In conclusion, both in vitro and in vivo pharmacological and toxicological studies showed that LPM6690061 was a safe and efficacious 5-HT2A receptor antagonist/inverse agonist which supports the clinical development as a novel antipsychotic drug.


Assuntos
Antipsicóticos , Serotonina , Ratos , Humanos , Animais , Cães , Agonismo Inverso de Drogas , Receptor 5-HT2A de Serotonina , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico
3.
Acta Pharm Sin B ; 12(4): 2029-2042, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35847507

RESUMO

As endogenous courier vesicles, exosomes play crucial roles in macromolecule transmission and intercellular communication. Therefore, exosomes have drawn increasing attention as biomimetic drug-delivery vehicles over the past few years. However, few studies have investigated the encapsulation of peptide/protein drugs into exosomes for oral administration. Additionally, the mechanisms underlying their biomimetic properties as oral delivery vehicles remain unknown. Herein, insulin-loaded milk-derived exosomes (EXO@INS) were fabricated and the in vivo hypoglycemic effect was investigated on type I diabetic rats. Surprisingly, EXO@INS (50 and 30 IU/kg) elicited a more superior and more sustained hypoglycemic effect compared with that obtained with subcutaneously injected insulin. Further mechanism studies indicated that the origin of excellent oral-performance of milk-derived exosomes combined active multi-targeting uptake, pH adaptation during gastrointestinal transit, nutrient assimilation related ERK1/2 and p38 MAPK signal pathway activation and intestinal mucus penetration. This study provides the first demonstration that multifunctional milk-derived exosomes offer solutions to many of the challenges arising from oral drug delivery and thus provide new insights into developing naturally-equipped nanovehicles for oral drug administration.

4.
Front Pharmacol ; 13: 848251, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370730

RESUMO

Major depressive disorder (MDD) is a chronic, remitting and debilitating disease and the etiology of MDD is highly complicated that involves genetic and environmental interactions. Despite many pharmacotherapeutic options, many patients remain poorly treated and the development of effective treatments remains a high priority in the field. LPM570065 is a potent 5-hydroxytryptamine (5-HT), norepinephrine (NE) and dopamine (DA) triple reuptake inhibitor and both preclinical and clinical results demonstrate significant efficacy against MDD. This study extends previous findings to examine the effects and underlying mechanisms of LPM570065 on stress vulnerability using a "two-hit" stress mouse model. The "two-hit" stress model used adult mice that had experienced early life maternal separation (MS) stress for social defeat stress (SDS) and then they were evaluated in three behavioral assays: sucrose preference test, tail suspension test and forced swimming test. For the mechanistic studies, methylation-specific differentially expressed genes in mouse hippocampal tissue and ventral tegmental area (VTA) were analyzed by whole-genome transcriptome analysis along with next-generation bisulfite sequencing analysis, followed by RT-PCR and pyrophosphate sequencing to confirm gene expression and methylation. LPM570065 significantly reversed depressive-like behaviors in the mice in the sucrose preference test, the tail suspension test, and the forced swimming test. Morphologically, LPM570065 increased the density of dendritic spines in hippocampal CA1 neurons. Hypermethylation and downregulation of oxytocin receptor (Oxtr) in the hippocampal tissues along with increased protein expression of Dnmt1 and Dnmt3a in mice that experienced the "two-hit" stress compared to those that only experienced adulthood social defeat stress, and LPM570065 could reverse these changes. Combined, these results suggest that methylation specificity of the gene Oxtr in the hippocampus may play an important role in early life stress-induced susceptibility to depression and that the5-HT/NE/DA triple reuptake inhibitor LPM570065 may reduce depression susceptibility via the reversal of the methylation of the gene Oxtr.

5.
Biomacromolecules ; 23(4): 1789-1802, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35344361

RESUMO

The massive accumulation of plastic waste has caused a serious negative impact on the human living environment. Replacing traditional petroleum-based polymers with biobased and biodegradable poly(l-lactic acid) (PLLA) is considered an effective way to solve this problem. However, it is still a great challenge to manufacture PLLA-based composites with high thermal conductivity and excellent mechanical properties via tailoring the microstructures of the blend composites. In the present work, a melt extrusion-stretching method is utilized to fabricate biodegradable PLLA/poly(butylene adipate-co-butylene terephthalate)/carbon nanofiber (PLLA/PBAT/CNF) blend composites. It is found that the incorporation of the extensional flow field induces the formation of multioriented microstructures in the composites, including the oriented PLLA molecular chains, elongated PBAT dispersed phase, and oriented CNFs, which synergistically improve the thermal conductivity and mechanical properties of the blend composites. At a CNF content of 10 wt %, the in-plane thermal conductivity, tensile strength, and elongation at break of the blend composite reach 1.53 Wm-1 K-1, 66.8 MPa, and 56.5%, respectively, which increased by 31.9, 73.5, and 874.1% compared with those of the conventionally hot-compressed sample (1.16 Wm-1 K-1, 38.5 MPa, and 5.8%, respectively). The main mechanism for the improved thermal conductivity is that the multioriented structure promotes the formation of a CNF thermal conductive network in the composites. The strengthening mechanism is attributed to the orientation of both PLLA molecular chains and CNFs in the stretching direction, restricting the movement of PLLA molecular segments around CNFs, and the toughening mechanism is due to the transformation of PLLA molecular chains from low-energy gt conformers to high-energy gg conformers induced by extensional flow field. More interestingly, after the extrusion-stretched samples are annealed, the oriented PLLA molecular chains form oriented crystal structures such as extended-chain lamellae, common "Shish-kebabs," and hybrid Shish-kebabs, which further enhance the thermal conductivity and heat resistance of the samples. This work reveals the effects of the orientation of the matrix molecular chains and crystallites on the thermal conductivity and mechanical properties of composites and provides a new way to prepare high-performance PLLA-based composites with high thermal conductivity, excellent mechanical properties, and high heat resistance.


Assuntos
Nanofibras , Poliésteres , Humanos , Nanofibras/química , Poliésteres/química , Polímeros/química , Condutividade Térmica
6.
Arch Toxicol ; 96(3): 845-857, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35098321

RESUMO

Tyrosine kinase inhibitors (TKIs), which have been developed and approved for cancer treatment in the last few years, are involved in synaptic plasticity of learning and memory. Epigenetic modifications also play crucial roles in the process of learning and memory, but its relationship with TKI-induced learning and memory impairment has not been investigated. We hypothesized that LPM4870108, an effective anti-cancer Trk inhibitor, might affect the learning and memory via epigenetic modifications. In this study, rats were orally administered with LPM4870108 (0, 1.25, 2.5, or 5.0 mg/kg) twice daily for 28 days, after which animals were subjected to a Morris water maze test. LPM4870108 exposure caused learning and memory impairments in this test in a dose-dependent manner and reduced the spine densities. Whole-genome transcriptomic analysis revealed significant differences in the patterns of hippocampal gene expression in LPM4870108-treated rats. These transcriptomic data were combined with next-generation bisulfite sequencing analysis, after which RT-PCR and pyrosequencing were conducted, revealing epigenetic alterations associated with genes (Snx8, Fgfr1, Dusp4, Vav2, and Satb2) known to regulate learning and memory. Increased mRNA and protein expression levels of hippocampal Dnmt1 and Dnmt3a were also observed in these rats. Overall, these data suggest that gene-specific alterations in patterns of DNA methylation can potentially contribute to the incidence of learning and memory deficits associated with exposure to LPM4870108.


Assuntos
Metilação de DNA , Aprendizagem em Labirinto , Transtornos da Memória , Inibidores de Proteínas Quinases , Animais , Feminino , Masculino , Ratos , Metilação de DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Epigênese Genética , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/toxicidade , Ratos Sprague-Dawley , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA