Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Alzheimer Res ; 15(7): 643-654, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29357794

RESUMO

BACKGROUND: Alzheimer's disease (AD) and age-related macular degeneration (AMD) present similarities, particularly with respect to oxidative stress, including production of 4-Hydroxy-2- nonenal (HNE). AMD has been named the AD in the eye. The Müller cells (MC) function as a principal glia of the retina and maintain water/potassium, glutamate homeostasis and redox status. Any MC dysfunction results in retinal neurodegeneration. OBJECTIVES: We investigated the effects of HNE in human MC. RESULTS: HNE induced an increase of the reactive oxygen species associated with mitochondrial dysfunction and apoptosis. HNE induced endoplasmic reticulum (ER) stress (upregulation of GRP78/Bip, and the proapoptotic factor, CHOP). HNE also impaired expression of genes controlling potassium homeostasis (KCNJ10), glutamate detoxification (GS), and the visual cycle (RLBP1). MC adaptive response to HNE included upregulation of amyloid-ß protein precursor (AßPP). To determine the role of AßPP, we overexpressed AßPP in MC. Overexpression of AßPP induced strong antioxidant and anti-ER stress (PERK downregulation and GADD34 upregulation) responses accompanied by activation of the prosurvival branch of the unfolded protein response. It was also associated with upregulation of major genes involved in MC-controlled retinal homeostasis (KCNJ10, GS, and RLBP1) and protection against HNE-induced apoptosis. Therefore, AßPP is an ER and oxidative stress responsive molecule, and is able to stimulate the transcription of major genes involved in MC functions impaired by HNE. CONCLUSION: Our study suggests that targeting oxidative and ER stress might be a potential therapeutic strategy against glia impairment in AMD and AD, in light of the common features between the two pathologies.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Sobrevivência Celular/fisiologia , Neuroglia/metabolismo , Estresse Oxidativo/fisiologia , Transcriptoma , Resposta a Proteínas não Dobradas/fisiologia , Precursor de Proteína beta-Amiloide/genética , Morte Celular/fisiologia , Linhagem Celular , Membrana Celular/metabolismo , Chaperona BiP do Retículo Endoplasmático , Humanos , Mitocôndrias/metabolismo , Neuroproteção/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Transcrição Gênica/fisiologia
2.
Aging Cell ; 11(4): 683-93, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22577879

RESUMO

In normal retinas, amyloid-ß (Aß) accumulates in the subretinal space, at the interface of the retinal pigment epithelium, and the photoreceptor outer segments. However, the molecular and cellular effects of subretinal Aß remain inadequately elucidated. We previously showed that subretinal injection of Aß(1-42) induces retinal inflammation, followed by photoreceptor cell death. The retinal Müller glial (RMG) cells, which are the principal retinal glial cells, are metabolically coupled to photoreceptors. Their role in the maintenance of retinal water/potassium and glutamate homeostasis makes them important players in photoreceptor survival. This study investigated the effects of subretinal Aß(1-42) on RMG cells and of Aß(1-42)-induced inflammation on retinal homeostasis. RMG cell gliosis (upregulation of GFAP, vimentin, and nestin) on day 1 postinjection and a proinflammatory phenotype were the first signs of retinal alteration induced by Aß(1-42). On day 3, we detected modifications in the protein expression patterns of cyclooxygenase 2 (COX-2), glutamine synthetase (GS), Kir4.1 [the inwardly rectifying potassium (Kir) channel], and aquaporin (AQP)-4 water channels in RMG cells and of the photoreceptor-associated AQP-1. The integrity of the blood-retina barrier was compromised and retinal edema developed. Aß(1-42) induced endoplasmic reticulum stress associated with sustained upregulation of the proapoptotic factors of the unfolded protein response and persistent photoreceptor apoptosis. Indomethacin treatment decreased inflammation and reversed the Aß(1-42)-induced gliosis and modifications in the expression patterns of COX-2, Kir4.1, and AQP-1, but not of AQP-4 or GS. Nor did it improve edema. Our study pinpoints the adaptive response to Aß of specific RMG cell functions.


Assuntos
Peptídeos beta-Amiloides/administração & dosagem , Gliose/patologia , Inflamação/patologia , Fragmentos de Peptídeos/administração & dosagem , Degeneração Retiniana/patologia , Peptídeos beta-Amiloides/toxicidade , Animais , Apoptose/efeitos dos fármacos , Barreira Hematorretiniana/efeitos dos fármacos , Barreira Hematorretiniana/patologia , Barreira Hematorretiniana/fisiopatologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/toxicidade , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/patologia , Células Fotorreceptoras de Vertebrados/fisiologia , Retina/efeitos dos fármacos , Retina/patologia , Retina/fisiopatologia , Degeneração Retiniana/genética , Degeneração Retiniana/fisiopatologia
3.
Biol Cell ; 103(6): 287-301, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21524273

RESUMO

BACKGROUND INFORMATION: Cholesterol/sphingolipid-rich membrane microdomains or membrane rafts have been implicated in various aspects of receptor function such as activation, trafficking and synapse localization. More specifically in muscle, membrane rafts are involved in AChR (acetylcholine receptor) clustering triggered by the neural factor agrin, a mechanism considered integral to NMJ (neuromuscular junction) formation. In addition, actin polymerization is required for the formation and stabilization of AChR clusters in muscle fibres. Since membrane rafts are platforms sustaining actin nucleation, we hypothesize that these microdomains provide the suitable microenvironment favouring agrin/MuSK (muscle-specific kinase) signalling, eliciting in turn actin cytoskeleton reorganization and AChR clustering. However, the identity of the signalling pathways operating through these microdomains still remains unclear. RESULTS: In this work, we attempted to identify the interactions between membrane raft components and cortical skeleton that regulate, upon signalling by agrin, the assembly and stabilization of synaptic proteins of the postsynaptic membrane domain at the NMJ. We provide evidence that in C2C12 myotubes, agrin triggers the association of a subset of membrane rafts enriched in AChR, the -MuSK and Cdc42 (cell division cycle 42) to the actin cytoskeleton. Disruption of the liquid-ordered phase by methyl-ß-cyclodextrin abolished this association. We further show that actin and the actin-nucleation factors, N-WASP (neuronal Wiscott-Aldrich syndrome protein) and Arp2/3 (actin-related protein 2/3) are transiently associated with rafts on agrin engagement. Consistent with these observations, pharmacological inhibition of N-WASP activity perturbed agrin-elicited AChR clustering. Finally, immunoelectron microscopic analyses of myotube membrane uncovered that AChRs were constitutively associated with raft nanodomains at steady state that progressively coalesced on agrin activation. These rearrangements of membrane domains correlated with the reorganization of cortical actin cytoskeleton through concomitant and transient recruitment of the Arp2/3 complex to AChR-enriched rafts. CONCLUSIONS: The present observations support the notion that membrane rafts are involved in AChR clustering by promoting local actin cytoskeleton reorganization through the recruitment of effectors of the agrin/MuSK signalling cascade. These mechanisms are believed to play an important role in vivo in the formation of the NMJ.


Assuntos
Actinas/efeitos dos fármacos , Agrina/farmacologia , Citoesqueleto/metabolismo , Microdomínios da Membrana/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Receptores Colinérgicos/efeitos dos fármacos , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Animais , Western Blotting , Carbazóis/farmacologia , Linhagem Celular , Camundongos , Microscopia de Fluorescência , Microscopia Imunoeletrônica , Fibras Musculares Esqueléticas/metabolismo , Junção Neuromuscular/metabolismo , Polimerização , Propanolaminas/farmacologia , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Colinérgicos/metabolismo , Transdução de Sinais , Proteína Neuronal da Síndrome de Wiskott-Aldrich/antagonistas & inibidores , beta-Ciclodextrinas/farmacologia
4.
Neurobiol Dis ; 42(1): 55-72, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21220018

RESUMO

Age-related macular degeneration is characterized by the formation of drusen containing amyloid-ß (Aß) and the degeneration of photoreceptors. To explore the largely unknown role of Aß in the retina, we investigated the effects on photoreceptors of the oligomeric form of Aß(1-42). Subretinal injection of the Aß peptide induced misplaced expression of recoverin and synaptophysin in the photoreceptors, oxidative stress in their inner and outer segments, and finally apoptosis. Aß did not induce cell death in purified photoreceptor cell cultures, but did so in retinal cell cultures, thereby suggesting that the cellular environment plays a role in Aß-induced photoreceptor apoptosis. Subretinal injection of Aß was followed by activation and migration of microglial cells and then by photoreceptor apoptosis. Microglial cells phagocytosed rhodopsin-containing debris and Aß in the subretinal space. Quantitative RT-PCR allowed us to identify a specific gene expression profile associated with the Aß-induced progression of retinal degeneration and consistent with oxidative stress, inflammation, and an apoptotic program. The gene most highly upregulated in Aß-injected retinas was that for the chemokine CCL2, and its absence or that of its cognate receptor CCR2 greatly reduced migration of activated microglial cells to the site of retinal injury and profoundly worsened photoreceptor degeneration and disorganization of the retinal pigment epithelium in Aß-injected retinas. Our study pinpoints the roles of Aß and of CCL2/CCR2 axis-dependent inflammation in photoreceptor apoptosis.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Apoptose/fisiologia , Quimiocina CCL2/genética , Citoproteção , Inflamação/metabolismo , Fragmentos de Peptídeos/toxicidade , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Receptores CCR2/genética , Animais , Quimiocina CCL2/deficiência , Citoproteção/genética , Humanos , Inflamação/genética , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores CCR2/deficiência
5.
Acta Neuropathol ; 121(3): 351-63, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20978902

RESUMO

Very few studies have examined expression and function of amyloid precursor protein (APP) in the retina. We showed that APP mRNA and protein are expressed according to the different waves of retinal differentiation. Depletion of App led to an absence of amacrine cells, a 50% increase in the number of horizontal cells and alteration of the synapses. The retinas of adult APP(-/-) mice showed only half as many glycinergic amacrine cells as wild-type retinas. We identified Ptf1a, which plays a role in controlling both amacrine and horizontal cell fates, as a downstream effector of APP. The observation of a similar phenotype in sorLA knockout mice, a major regulator of APP processing, suggests that regulation of APP functions via sorLA controls the determination of amacrine and horizontal cell fate. These findings provide novel insights that indicate that APP plays an important role in retinal differentiation.


Assuntos
Precursor de Proteína beta-Amiloide/fisiologia , Diferenciação Celular/fisiologia , Retina/embriologia , Retina/crescimento & desenvolvimento , Envelhecimento/fisiologia , Células Amácrinas/citologia , Células Amácrinas/fisiologia , Animais , Proliferação de Células , Camundongos , Camundongos Knockout , Modelos Animais , Retina/citologia , Células Horizontais da Retina/citologia , Células Horizontais da Retina/fisiologia , Sinapses/fisiologia , Fatores de Transcrição/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA