Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Gastroenterology ; 159(5): 1882-1897.e5, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32768595

RESUMO

BACKGROUND & AIMS: Pancreatic ductal adenocarcinomas (PDACs) are hypovascular, resulting in the up-regulation of hypoxia inducible factor 1 alpha (HIF1A), which promotes the survival of cells under low-oxygen conditions. We studied the roles of HIF1A in the development of pancreatic tumors in mice. METHODS: We performed studies with KrasLSL-G12D/+;Trp53LSL-R172H/+;Pdx1-Cre (KPC) mice, KPC mice with labeled pancreatic epithelial cells (EKPC), and EKPC mice with pancreas-specific depletion of HIF1A. Pancreatic and other tissues were collected and analyzed by histology and immunohistochemistry. Cancer cells were cultured from PDACs from mice and analyzed in cell migration and invasion assays and by immunoblots, real-time polymerase chain reaction, and liquid chromatography-mass spectrometry. We performed studies with the human pancreatic cancer cell lines PATU-8988T, BxPC-3, PANC-1, and MiaPACA-2, which have no or low metastatic activity, and PATU-8988S, AsPC-1, SUIT-2 and Capan-1, which have high metastatic activity. Expression of genes was knocked down in primary cancer cells and pancreatic cancer cell lines by using small hairpin RNAs; cells were injected intravenously into immune-competent and NOD/SCID mice, and lung metastases were quantified. We compared levels of messenger RNAs in pancreatic tumors and normal pancreas in The Cancer Genome Atlas. RESULTS: EKPC mice with pancreas-specific deletion of HIF1A developed more advanced pancreatic neoplasias and PDACs with more invasion and metastasis, and had significantly shorter survival times, than EKPC mice. Pancreatic cancer cells from these tumors had higher invasive and metastatic activity in culture than cells from tumors of EKPC mice. HIF1A-knockout pancreatic cancer cells had increased expression of protein phosphatase 1 regulatory inhibitor subunit 1B (PPP1R1B). There was an inverse correlation between levels of HIF1A and PPP1R1B in human PDAC tumors; higher expression of PPP1R1B correlated with shorter survival times of patients. Metastatic human pancreatic cancer cell lines had increased levels of PPP1R1B and lower levels of HIF1A compared with nonmetastatic cancer cell lines; knockdown of PPP1R1B significantly reduced the ability of pancreatic cancer cells to form lung metastases in mice. PPP1R1B promoted degradation of p53 by stabilizing phosphorylation of MDM2 at Ser166. CONCLUSIONS: HIF1A can act a tumor suppressor by preventing the expression of PPP1R1B and subsequent degradation of the p53 protein in pancreatic cancer cells. Loss of HIF1A from pancreatic cancer cells increases their invasive and metastatic activity.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Movimento Celular , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/secundário , Linhagem Celular Tumoral , Modelos Animais de Doenças , Fosfoproteína 32 Regulada por cAMP e Dopamina/genética , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/deficiência , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Invasividade Neoplásica , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteólise , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais , Transativadores/genética , Transativadores/metabolismo , Hipóxia Tumoral , Microambiente Tumoral , Proteína Supressora de Tumor p53/genética , Regulação para Cima
2.
Nature ; 512(7512): 82-6, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25043044

RESUMO

'Gain' of supernumerary copies of the 8q24.21 chromosomal region has been shown to be common in many human cancers and is associated with poor prognosis. The well-characterized myelocytomatosis (MYC) oncogene resides in the 8q24.21 region and is consistently co-gained with an adjacent 'gene desert' of approximately 2 megabases that contains the long non-coding RNA gene PVT1, the CCDC26 gene candidate and the GSDMC gene. Whether low copy-number gain of one or more of these genes drives neoplasia is not known. Here we use chromosome engineering in mice to show that a single extra copy of either the Myc gene or the region encompassing Pvt1, Ccdc26 and Gsdmc fails to advance cancer measurably, whereas a single supernumerary segment encompassing all four genes successfully promotes cancer. Gain of PVT1 long non-coding RNA expression was required for high MYC protein levels in 8q24-amplified human cancer cells. PVT1 RNA and MYC protein expression correlated in primary human tumours, and copy number of PVT1 was co-increased in more than 98% of MYC-copy-increase cancers. Ablation of PVT1 from MYC-driven colon cancer line HCT116 diminished its tumorigenic potency. As MYC protein has been refractory to small-molecule inhibition, the dependence of high MYC protein levels on PVT1 long non-coding RNA provides a much needed therapeutic target.


Assuntos
Variações do Número de Cópias de DNA/genética , Amplificação de Genes/genética , Dosagem de Genes/genética , Genes myc/genética , Proteína Oncogênica p55(v-myc)/genética , RNA Longo não Codificante/genética , Animais , Transformação Celular Neoplásica , Cromossomos Humanos Par 8/genética , Modelos Animais de Doenças , Células HCT116 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteína Oncogênica p55(v-myc)/metabolismo , Fenótipo
3.
Gene ; 390(1-2): 153-65, 2007 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-17141428

RESUMO

Housekeeping genes are expressed across a wide variety of tissues. Since repetitive sequences have been reported to influence the expression of individual genes, we employed a novel approach to determine whether housekeeping genes can be distinguished from tissue-specific genes by their repetitive sequence context. We show that Alu elements are more highly concentrated around housekeeping genes while various longer (>400-bp) repetitive sequences ("repeats"), including Long Interspersed Nuclear Element-1 (LINE-1) elements, are excluded from these regions. We further show that isochore membership does not distinguish housekeeping genes from tissue-specific genes and that repetitive sequence environment distinguishes housekeeping genes from tissue-specific genes in every isochore. The distinct repetitive sequence environment, in combination with other previously published sequence properties of housekeeping genes, was used to develop a method of predicting housekeeping genes on the basis of DNA sequence alone. Using expression across tissue types as a measure of success, we demonstrate that repetitive sequence environment is by far the most important sequence feature identified to date for distinguishing housekeeping genes.


Assuntos
Sequências Repetitivas de Ácido Nucleico , Região 3'-Flanqueadora , Região 5'-Flanqueadora , Elementos Alu , Composição de Bases , Ilhas de CpG , DNA/química , DNA/genética , Genoma Humano , Humanos , Elementos Nucleotídeos Longos e Dispersos , Seleção Genética , Elementos Nucleotídeos Curtos e Dispersos , Distribuição Tecidual
4.
Genetics ; 174(3): 1115-33, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16980402

RESUMO

The inactive X chromosome of female mammals displays several properties of heterochromatin including late replication, histone H4 hypoacetylation, histone H3 hypomethylation at lysine-4, and methylated CpG islands. We show that cre-Lox-mediated excision of 21 kb from both Xist alleles in female mouse fibroblasts led to the appearance of two histone modifications throughout the inactive X chromosome usually associated with euchromatin: histone H4 acetylation and histone H3 lysine-4 methylation. Despite these euchromatic properties, the inactive X chromosome was replicated even later in S phase than in wild-type female cells. Homozygosity for the deletion also caused regions of the active X chromosome that are associated with very high concentrations of LINE-1 elements to be replicated very late in S phase. Extreme late replication is a property of fragile sites and the 21-kb deletions destabilized the DNA of both X chromosomes, leading to deletions and translocations. This was accompanied by the phosphorylation of p53 at serine-15, an event that occurs in response to DNA damage, and the accumulation of gamma-H2AX, a histone involved in DNA repair, on the X chromosome. The Xist locus therefore maintains the DNA stability of both X chromosomes.


Assuntos
Período de Replicação do DNA , Deleção de Genes , Heterocromatina , RNA não Traduzido/genética , Cromossomo X , Acetilação , Animais , Linhagem Celular Transformada , Transformação Celular Viral , Células Cultivadas , Replicação do DNA , Embrião de Mamíferos , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Histonas/biossíntese , Metilação , Camundongos , Fosforilação , RNA Longo não Codificante , RNA Mensageiro/análise , Cariotipagem Espectral , Proteína Supressora de Tumor p53/metabolismo
5.
Mutat Res ; 601(1-2): 113-24, 2006 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-16920159

RESUMO

Pir51, a protein of unknown function that interacts with Rad51, was identified in a screen for genes that were highly expressed in aggressive mantle cell lymphoma (MCL) versus indolent small lymphocytic lymphoma (SLL) patient samples. We show that Pir51 is a nuclear protein expressed in a variety of cell types and that its expression is regulated during the cell cycle in a pattern nearly identical to Rad51. Also similar to Rad51, Pir51 levels did not change in response to a variety of DNA damaging agents. siRNA depletion of Pir51 did not reduce homologous recombination repair (HRR), but sensitized cells to mitomycin C (MMC)-induced DNA crosslinking and resulted in elevated levels of double-strand breaks (DSBs) in metaphase chromosome spreads and reduced colony formation. Therefore, Pir51 maintains genomic integrity and potentially connects the early response to DNA crosslinks, orchestrated by the ATR kinase and Fanconi Anemia (FA) proteins, to later stages of Rad51-dependent repair. Our results provide the first example of a Rad51-binding protein that influences DNA crosslink repair without affecting homologous recombination repair.


Assuntos
Quebra Cromossômica/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Expressão Gênica/genética , Linfoma/genética , Mitomicina/farmacologia , Northern Blotting , Western Blotting , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Dano ao DNA/genética , Reparo do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Células HeLa , Humanos , Linfoma/metabolismo , Mitomicina/metabolismo , Mutação/genética , Ligação Proteica , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA , Rad51 Recombinase/metabolismo
6.
Am J Med Genet A ; 140(5): 442-52, 2006 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-16470732

RESUMO

Few cases of de novo unbalanced X;autosome translocations associated with a normal or mild dysmorphic phenotype have been described. We report a 3-year-old dizygotic female twin with prenatally ascertained increased nuchal translucency. Prenatal chromosome studies revealed nearly complete trisomy 15 due to a de novo unbalanced translocation t(X;15)(q22;q11.2) confirmed postnatally. A mild phenotype was observed with normal birth measurements, minor facial dysmorphic features (hypertelorism, short broad nose, and a relatively long philtrum), and moderate developmental delay at the age of 3 years in comparison to her male fraternal twin. Replication timing utilizing BrdU and acridine-orange staining showed that the der(X) chromosome was late-replicating with variable spreading of inactivation into the translocated 15q segment. The der(X) was determined to be of paternal origin by analyses of polymorphic markers and CGG-repeat at FMR1. Methylation analysis at the SNRPN locus and analysis of microsatellites on 15q revealed paternal isodisomy with double dosage for all markers and the unmethylated SNRPN gene. The Xq breakpoint was mapped within two overlapping BAC clones RP11-575K24 and RP13-483F6 at Xq22.3 and the 15q breakpoint to 15q11.2, within overlapping clones RP11-509A17 and RP11-382A4 that are all significantly enriched for LINE-1 elements (36.6%, 43.0%, 26.6%, 22.0%, respectively). We speculate that the attenuated phenotype may be due to inactivation spreading into 15q, potentially facilitated by the enrichment of LINE-1 elements at the breakpoints. In silico analysis of breakpoint regions revealed the presence of highly identical low-copy repeats (LCRs) at both breakpoints, potentially involved in generating the translocation.


Assuntos
Cromossomos Humanos Par 15/genética , Cromossomos Humanos X/genética , Translocação Genética , Trissomia , Alelos , Autoantígenos/genética , Pré-Escolar , Bandeamento Cromossômico , Metilação de DNA , Feminino , Genótipo , Humanos , Hibridização in Situ Fluorescente , Cariotipagem , Elementos Nucleotídeos Longos e Dispersos/genética , Masculino , Repetições de Microssatélites/genética , Linhagem , Fenótipo , Ribonucleoproteínas Nucleares Pequenas/genética , Proteínas Centrais de snRNP
7.
Mutat Res ; 596(1-2): 64-75, 2006 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-16488448

RESUMO

The N-end rule pathway of protein degradation targets proteins with destabilizing N-terminal residues. Ubr2 is one of the E3 ubiquitin ligases of the mouse N-end rule pathway. We have previously shown that Ubr2-/- male mice are infertile, owing to the arrest of spermatocytes between the leptotene/zygotene and pachytene of meiosis I, the failure of chromosome pairing, and subsequent apoptosis. Here, we report that mouse fibroblast cells derived from Ubr2-/- embryos display genome instability. The frequency of chromosomal bridges and micronuclei were much higher in Ubr2-/- fibroblasts than in +/+ controls. Metaphase chromosome spreads from Ubr2-/- cells revealed a high incidence of spontaneous chromosomal gaps, indicating chromosomal fragility. These fragile sites were generally replicated late in S phase. Ubr2-/- cells were hypersensitive to mitomycin C, a DNA cross-linking agent, but displayed normal sensitivity to gamma-irradiation. A reporter assay showed that Ubr2-/- cells are significantly impaired in the homologous recombination repair of a double strand break. In contrast, Ubr2-/- cells appeared normal in an assay for non-homologous end joining. Our results therefore unveil the role of the ubiquitin ligase Ubr2 in maintaining genome integrity and in homologous recombination repair.


Assuntos
Fragilidade Cromossômica/genética , Reparo do DNA/genética , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética , Animais , Células Cultivadas , Dano ao DNA/genética , Embrião de Mamíferos , Fibroblastos/fisiologia , Genes Reporter , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Recombinação Genética
8.
DNA Repair (Amst) ; 5(4): 432-43, 2006 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-16426903

RESUMO

Double strand DNA breaks in the genome lead to the activation of the ataxia-telangiectasia mutated (ATM) kinase in a process that requires ATM autophosphorylation at serine-1981. ATM autophosphorylation only occurs if ATM is previously acetylated by Tip60. The activated ATM kinase phosphorylates proteins involved in arresting the cell cycle, including p53, and in repairing the DNA breaks. Chloroquine treatment and other manipulations that produce chromatin defects in the absence of detectable double strand breaks also trigger ATM phosphorylation and the phosphorylation of p53 in primary human fibroblasts, while other downstream substrates of ATM that are involved in the repair of DNA double strand breaks remain unphosphorylated. This raises the issue of whether ATM is constitutively activated in patients with genetic diseases that display chromatin defects. We examined lymphoblastoid cell lines (LCLs) generated from patients with different types of chromatin disorders: Immunodeficiency, Centromeric instability, Facial anomalies (ICF) syndrome, Coffin Lowry syndrome, Rubinstein Taybi syndrome and Fascioscapulohumeral Muscular Dystrophy. We show that ATM is phosphorylated on serine-1981 in LCLs derived from ICF patients but not from the other syndromes. The phosphorylated ATM in ICF cells did not phosphorylate the downstream targets NBS1, SMC1 and H2AX, all of which require the presence of double strand breaks. We demonstrate that ICF cells respond normally to ionizing radiation, ruling out the possibility that genetic deficiency in ICF cells renders activated ATM incapable of phosphorylating its downstream substrates. Surprisingly, p53 was also not phosphorylated in ICF cells or in chloroquine-treated wild type LCLs. In this regard the response to chromatin-altering agents differs between primary fibroblasts and LCLs. Our findings indicate that although phosphorylation at serine-1981 is essential in the activation of the ATM kinase, serine-1981 phosphorylation is insufficient to render ATM an active kinase towards downstream substrates, including p53.


Assuntos
Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/patologia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Anormalidades Múltiplas/enzimologia , Androstadienos/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia , Ciclo Celular , Linhagem Celular Tumoral , Cloroquina/farmacologia , Cromatina/efeitos dos fármacos , Dano ao DNA/genética , Feminino , Humanos , Masculino , Fosforilação/efeitos dos fármacos , Fosforilação/efeitos da radiação , Fosfotransferases/metabolismo , Tolerância a Radiação/genética , Radiação Ionizante , Serina/metabolismo , Síndrome , Proteína Supressora de Tumor p53/metabolismo , Wortmanina
9.
Biochem Biophys Res Commun ; 337(3): 875-80, 2005 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-16213462

RESUMO

ATM and ATR are well documented for their roles in maintaining the integrity of genomic DNA by responding to DNA damage and preparing the cell for repair. Since ATM and ATR have been reported to exist in complexes with histone deacetylases, we asked whether Atm and Atr might also uphold gene silencing by heterochromatin. We show that the Atm/Atr inhibitor 2-aminopurine causes the inactive X chromosome to accumulate abnormal chromatin and undergo unwanted gene reactivation. We provide evidence that this gene expression from the inactive X chromosome is not a byproduct of the accumulation of DNA breaks. Individually inhibiting Atm and Atr by either small interfering RNA or the expression of dominant-negative ATM and ATR constructs also compromised X-inactivation. Atm and Atr, therefore, not only function in responding to DNA damage but perhaps also are involved in gene silencing via the maintenance of heterochromatin.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Dano ao DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/fisiologia , Inativação Gênica/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Inativação do Cromossomo X/fisiologia , Cromossomo X/genética , 2-Aminopurina/farmacologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Linhagem Celular , Dano ao DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/efeitos da radiação , Raios gama , Regulação da Expressão Gênica/genética , Inativação Gênica/efeitos dos fármacos , Inativação Gênica/efeitos da radiação , Heterocromatina/metabolismo , Camundongos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/genética , Cromossomo X/efeitos dos fármacos , Cromossomo X/efeitos da radiação , Inativação do Cromossomo X/efeitos dos fármacos , Inativação do Cromossomo X/efeitos da radiação
10.
Genetics ; 171(2): 663-72, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15972460

RESUMO

In female mammalian cells, the inactive X chromosome is replicated late in S phase while the active X chromosome is replicated earlier. The replication times of the X chromosomes reflect a general trend in which late replication is associated with gene repression and earlier replication with transcriptional competence. The X-linked Xist gene is expressed exclusively from the inactive X chromosome where it is involved in the initiation and maintenance of X-inactivation. In contrast, no biological activity has been assigned to the Xist locus of the active X chromosome where the Xist gene is transcriptionally silenced. Here, we provide evidence that the element(s) at the nontranscribed Xist locus of the active X chromosome controls chromosomal replication timing in cis.


Assuntos
Período de Replicação do DNA/genética , Camundongos/genética , RNA não Traduzido/genética , Inativação do Cromossomo X/genética , Cromossomo X/genética , Animais , Bromodesoxiuridina , Primers do DNA , Deleção de Genes , Hibridização in Situ Fluorescente , RNA Longo não Codificante
11.
Proc Natl Acad Sci U S A ; 102(21): 7635-40, 2005 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-15897469

RESUMO

X inactivation involves the stable silencing of one of the two X chromosomes in XX female mammals. Initiation of this process occurs during early development and involves Xist (X-inactive-specific transcript) RNA coating and the recruitment of Polycomb repressive complex (PRC) 2 and PRC1 proteins. This recruitment results in an inactive state that is initially labile but is further locked in by epigenetic marks such as DNA methylation, histone hypoacetylation, and MACROH2A deposition. Here, we report that the E3 ubiquitin ligase consisting of SPOP and CULLIN3 is able to ubiquitinate the Polycomb group protein BMI1 and the variant histone MACROH2A. We find that in addition to MACROH2A, PRC1 is recruited to the inactivated X chromosome in somatic cells in a highly dynamic, cell cycle-regulated manner. Importantly, RNAi-mediated knock-down of CULLIN3 or SPOP results in loss of MACROH2A1 from the inactivated X chromosome (Xi), leading to reactivation of the Xi in the presence of inhibitors of DNA methylation and histone deacetylation. Likewise, Xi reactivation is also seen on MacroH2A1 RNAi under these conditions. Hence, we propose that the PRC1 complex is involved in the maintenance of X chromosome inactivation in somatic cells. We further demonstrate that MACROH2A1 deposition is regulated by the CULLIN3/SPOP ligase complex and is actively involved in stable X inactivation, likely through the formation of an additional layer of epigenetic silencing.


Assuntos
Mecanismo Genético de Compensação de Dose , Histonas/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Western Blotting , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Citometria de Fluxo , Proteínas de Fluorescência Verde , Humanos , Imunoprecipitação , Hibridização in Situ Fluorescente , Plasmídeos/genética , Complexo Repressor Polycomb 1 , Proteínas do Grupo Polycomb , Interferência de RNA , Transfecção
12.
Proc Natl Acad Sci U S A ; 100(17): 9940-5, 2003 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-12909712

RESUMO

Genes subject to monoallelic expression are expressed from only one of the two alleles either selected at random (random monoallelic genes) or in a parent-of-origin specific manner (imprinted genes). Because high densities of long interspersed nuclear element (LINE)-1 transposon sequence have been implicated in X-inactivation, we asked whether monoallelically expressed autosomal genes are also flanked by high densities of LINE-1 sequence. A statistical analysis of repeat content in the regions surrounding monoallelically and biallelically expressed genes revealed that random monoallelic genes were flanked by significantly higher densities of LINE-1 sequence, evolutionarily more recent and less truncated LINE-1 elements, fewer CpG islands, and fewer base-pairs of short interspersed nuclear elements (SINEs) sequence than biallelically expressed genes. Random monoallelic and imprinted genes were pooled and subjected to a clustering analysis algorithm, which found two clusters on the basis of aforementioned sequence characteristics. Interestingly, these clusters did not follow the random monoallelic vs. imprinted classifications. We infer that chromosomal sequence context plays a role in monoallelic gene expression and may involve the recognition of long repeats or other features. The sequence characteristics that distinguished the high-LINE-1 category were used to identify more than 1,000 additional genes from the human and mouse genomes as candidate genes for monoallelic expression.


Assuntos
Alelos , Expressão Gênica , Elementos Nucleotídeos Longos e Dispersos , Algoritmos , Animais , Ilhas de CpG , Mecanismo Genético de Compensação de Dose , Feminino , Genoma , Genoma Humano , Humanos , Camundongos , Elementos Nucleotídeos Curtos e Dispersos
13.
Cell ; 111(3): 393-405, 2002 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-12419249

RESUMO

BRCA1, a breast and ovarian tumor suppressor, colocalizes with markers of the inactive X chromosome (Xi) on Xi in female somatic cells and associates with XIST RNA, as detected by chromatin immunoprecipitation. Breast and ovarian carcinoma cells lacking BRCA1 show evidence of defects in Xi chromatin structure. Reconstitution of BRCA1-deficient cells with wt BRCA1 led to the appearance of focal XIST RNA staining without altering XIST abundance. Inhibiting BRCA1 synthesis in a suitable reporter line led to increased expression of an otherwise silenced Xi-located GFP transgene. These observations suggest that loss of BRCA1 in female cells may lead to Xi perturbation and destabilization of its silenced state.


Assuntos
Proteína BRCA1/metabolismo , Mecanismo Genético de Compensação de Dose , RNA não Traduzido/genética , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor , Ubiquitina-Proteína Ligases , Cromossomo X/metabolismo , Animais , Proteína BRCA1/genética , Proteínas de Transporte/metabolismo , Metilação de DNA , Feminino , Expressão Gênica , Histonas/metabolismo , Humanos , Lisina/metabolismo , Masculino , Camundongos , RNA Longo não Codificante , Proteínas de Ligação a RNA/genética , Espermatócitos/metabolismo , Coloração e Rotulagem/métodos , Células Tumorais Cultivadas
14.
Genesis ; 34(4): 257-66, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12434336

RESUMO

Transcriptional inactivation of the single X chromosome occurs in spermatogenic cells during male meiosis in mammals and has been shown to be coincident with expression of the Xist gene in spermatogonia and spermatocytes in mice. However, male mice carrying an ablated Xist gene show normal fertility. Here we examined expression from the Xist locus during spermatogenesis in wild-type mice and detected sense (Xist), but not antisense (Tsix) transcripts. In addition, we examined expression and chromatin conformation of X-linked structural genes in meiotic and postmeiotic spermatogenic cells from wild-type and Xist(-) mice and found no differences associated with the absence of a functional Xist gene. These results, along with the formation of a morphologically normal XY body in primary spermatocytes in Xist(-) mice, indicate that a functional Xist gene is not required for X-chromosome inactivation during spermatogenesis and that this process is therefore regulated by a different mechanism than that which regulates X-chromosome inactivation in female embryonic cells.


Assuntos
Mecanismo Genético de Compensação de Dose , Regulação da Expressão Gênica , RNA não Traduzido/metabolismo , Espermatogênese/genética , Cromossomo X/genética , Animais , Cromatina/genética , Cromatina/metabolismo , Deleção de Genes , Inativação Gênica , Masculino , Camundongos , Camundongos Knockout , RNA Longo não Codificante , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA não Traduzido/genética , Espermatócitos/metabolismo , Testículo/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , Cromossomo Y/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA