Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 43(5): 2334, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27147345

RESUMO

PURPOSE: The GE SIGNA PET/MR is a new whole body integrated time-of-flight (ToF)-PET/MR scanner from GE Healthcare. The system is capable of simultaneous PET and MR image acquisition with sub-400 ps coincidence time resolution. Simultaneous PET/MR holds great potential as a method of interrogating molecular, functional, and anatomical parameters in clinical disease in one study. Despite the complementary imaging capabilities of PET and MRI, their respective hardware tends to be incompatible due to mutual interference. In this work, the GE SIGNA PET/MR is evaluated in terms of PET performance and the potential effects of interference from MRI operation. METHODS: The NEMA NU 2-2012 protocol was followed to measure PET performance parameters including spatial resolution, noise equivalent count rate, sensitivity, accuracy, and image quality. Each of these tests was performed both with the MR subsystem idle and with continuous MR pulsing for the duration of the PET data acquisition. Most measurements were repeated at three separate test sites where the system is installed. RESULTS: The scanner has achieved an average of 4.4, 4.1, and 5.3 mm full width at half maximum radial, tangential, and axial spatial resolutions, respectively, at 1 cm from the transaxial FOV center. The peak noise equivalent count rate (NECR) of 218 kcps and a scatter fraction of 43.6% are reached at an activity concentration of 17.8 kBq/ml. Sensitivity at the center position is 23.3 cps/kBq. The maximum relative slice count rate error below peak NECR was 3.3%, and the residual error from attenuation and scatter corrections was 3.6%. Continuous MR pulsing had either no effect or a minor effect on each measurement. CONCLUSIONS: Performance measurements of the ToF-PET whole body GE SIGNA PET/MR system indicate that it is a promising new simultaneous imaging platform.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Imagem Multimodal/instrumentação , Tomografia por Emissão de Pósitrons/instrumentação , Imagem Corporal Total/instrumentação , Desenho de Equipamento , Fluordesoxiglucose F18 , Humanos , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Espalhamento de Radiação , Temperatura , Fatores de Tempo , Imagem Corporal Total/métodos
2.
IEEE Trans Med Imaging ; 35(8): 1907-14, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26978664

RESUMO

A recent entry into the rapidly evolving field of integrated PET/MR scanners is presented in this paper: a whole body hybrid PET/MR system (SIGNA PET/MR, GE Healthcare) capable of simultaneous acquisition of both time-of-flight (TOF) PET and high resolution MR data. The PET ring was integrated into an existing 3T MR system resulting in a (patient) bore opening of 60 cm diameter, with a 25 cm axial FOV. PET performance was evaluated both on the standalone PET ring and on the same detector integrated into the MR system, to assess the level of mutual interference between both subsystems. In both configurations we obtained detector performance data. PET detector performance was not significantly affected by integration into the MR system. The global energy resolution was within 2% (10.3% versus 10.5%), and the system coincidence time resolution showed a maximum change of < 3% (385 ps versus 394 ps) when measured outside MR and during simultaneous PET/MRI acquisitions, respectively. To evaluate PET image quality and resolution, the NEMA IQ phantom was acquired with MR idle and with MR active. Impact of PET on MR IQ was assessed by comparing SNR with PET acquisition on and off. B0 and B1 homogeneities were acquired before and after the integration of the PET ring inside the magnet. In vivo brain and whole body head-to-thighs data were acquired to demonstrate clinical image quality.


Assuntos
Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Humanos , Imagens de Fantasmas
4.
Nat Methods ; 8(4): 347-52, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21399637

RESUMO

Positron emission tomography (PET) neuroimaging and behavioral assays in rodents are widely used in neuroscience. PET gives insights into the molecular processes of neuronal communication, and behavioral methods analyze the actions that are associated with such processes. These methods have not been directly integrated, because PET studies in animals have until now required general anesthesia to immobilize the subject, which precludes behavioral studies. We present a method for imaging awake, behaving rats with PET that allows the simultaneous study of behavior. Key components include the 'rat conscious animal PET' or RatCAP, a miniature portable PET scanner that is mounted on the rat's head, a mobility system that allows considerable freedom of movement, radiotracer administration techniques and methods for quantifying behavior and correlating the two data sets. The simultaneity of the PET and behavioral data provides a multidimensional tool for studying the functions of different brain regions and their molecular constituents.


Assuntos
Comportamento Animal/fisiologia , Mapeamento Encefálico/instrumentação , Encéfalo/fisiologia , Tomografia por Emissão de Pósitrons/instrumentação , Ratos/fisiologia , Animais , Mapeamento Encefálico/métodos
5.
Phys Med Biol ; 56(8): 2459-80, 2011 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-21441651

RESUMO

We developed a non-magnetic positron-emission tomography (PET) device based on the rat conscious animal PET that operates in a small-animal magnetic resonance imaging (MRI) scanner, thereby enabling us to carry out simultaneous PET/MRI studies. The PET detector comprises 12 detector blocks, each being a 4 × 8 array of lutetium oxyorthosilicate crystals (2.22 × 2.22 × 5 mm(3)) coupled to a matching non-magnetic avalanche photodiode array. The detector blocks, housed in a plastic case, form a 38 mm inner diameter ring with an 18 mm axial extent. Custom-built MRI coils fit inside the positron-emission tomography (PET) device, operating in transceiver mode. The PET insert is integrated with a Bruker 9.4 T 210 mm clear-bore diameter MRI scanner. We acquired simultaneous PET/MR images of phantoms, of in vivo rat brain, and of cardiac-gated mouse heart using [(11)C]raclopride and 2-deoxy-2-[(18)F]fluoro-D-glucose PET radiotracers. There was minor interference between the PET electronics and the MRI during simultaneous operation, and small effects on the signal-to-noise ratio in the MR images in the presence of the PET, but no noticeable visual artifacts. Gradient echo and high-duty-cycle spin echo radio frequency (RF) pulses resulted in a 7% and a 28% loss in PET counts, respectively, due to high PET counts during the RF pulses that had to be gated out. The calibration of the activity concentration of PET data during MR pulsing is reproducible within less than 6%. Our initial results demonstrate the feasibility of performing simultaneous PET and MRI studies in adult rats and mice using the same PET insert in a small-bore 9.4 T MRI.


Assuntos
Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/métodos , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Calibragem , Feminino , Fluordesoxiglucose F18 , Coração/diagnóstico por imagem , Coração/fisiologia , Lutécio , Imageamento por Ressonância Magnética/instrumentação , Masculino , Camundongos , Tomografia por Emissão de Pósitrons/instrumentação , Racloprida , Radioisótopos , Compostos Radiofarmacêuticos , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Silicatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA