Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Exp Zool B Mol Dev Evol ; 340(4): 283-297, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36581603

RESUMO

Long-term sperm storage by females in various regions of the oviduct is documented across many invertebrate and vertebrate species. Although, many reports emphasize on the histology, histochemistry and ultrastructural features of sperm storage, very little is known about the mechanisms underlying the sperm storage. The current review documents the occurrence of sperm storage by females in a wide array of invertebrate and vertebrate species. This review also provides an insight on the presence of various molecular factors of the sperm storage tubules presumably responsible for the prolonged sperm storage with an emphasis on a model reptile, the Indian garden lizard, Calotes versicolor which contains a unique approximately 55-kDa protein in its utero-vaginal lavage and found to inhibit washed epididymal sperm motility in a concentration and time-dependent manner in a reversible fashion.


Assuntos
Lagartos , Motilidade dos Espermatozoides , Masculino , Feminino , Animais , Espermatozoides , Sêmen , Oviductos/metabolismo , Oviductos/ultraestrutura
2.
J Leukoc Biol ; 109(5): 915-930, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33070381

RESUMO

Alpha-1-acid glycoprotein (AGP-1) is a positive acute phase glycoprotein with uncertain functions. Serum AGP-1 (sAGP-1) is primarily derived from hepatocytes and circulates as 12-20 different glycoforms. We isolated a glycoform secreted from platelet-activating factor (PAF)-stimulated human neutrophils (nAGP-1). Its peptide sequence was identical to hepatocyte-derived sAGP-1, but nAGP-1 differed from sAGP-1 in its chromatographic behavior, electrophoretic mobility, and pattern of glycosylation. The function of these 2 glycoforms also differed. sAGP-1 activated neutrophil adhesion, migration, and neutrophil extracellular traps (NETosis) involving myeloperoxidase, peptidylarginine deiminase 4, and phosphorylation of ERK in a dose-dependent fashion, whereas nAGP-1 was ineffective as an agonist for these events. Furthermore, sAGP-1, but not nAGP-1, inhibited LPS-stimulated NETosis. Interestingly, nAGP-1 inhibited sAGP-1-stimulated neutrophil NETosis. The discordant effect of the differentially glycosylated AGP-1 glycoforms was also observed in platelets where neither of the AGP-1 glycoforms alone stimulated aggregation of washed human platelets, but sAGP-1, and not nAGP-1, inhibited aggregation induced by PAF or ADP, but not by thrombin. These functional effects of sAGP-1 correlated with intracellular cAMP accumulation and phosphorylation of the protein kinase A substrate vasodilator-stimulated phosphoprotein and reduction of Akt, ERK, and p38 phosphorylation. Thus, the sAGP-1 glycoform limits platelet reactivity, whereas nAGP-1 glycoform also limits proinflammatory actions of sAGP-1. These studies identify new functions for this acute phase glycoprotein and demonstrate that the glycosylation of AGP-1 controls its effects on 2 critical cells of acute inflammation.


Assuntos
Plaquetas/metabolismo , Neutrófilos/metabolismo , Orosomucoide/metabolismo , Difosfato de Adenosina/farmacologia , Biomarcadores/metabolismo , Plaquetas/efeitos dos fármacos , AMP Cíclico/metabolismo , Armadilhas Extracelulares/metabolismo , Glicosilação/efeitos dos fármacos , Humanos , Modelos Biológicos , Ativação de Neutrófilo/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Orosomucoide/agonistas , Peptídeos/metabolismo , Fator de Ativação de Plaquetas/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Polissacarídeos/metabolismo , Isoformas de Proteínas/metabolismo
3.
Immunobiology ; 224(5): 672-680, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31239174

RESUMO

Alpha-1-acid glycoprotein (AGP-1) is a major positive acute phase glycoprotein with unknown functions that likely play a role in inflammation. We tested its involvement in a variety of inflammatory responses using human AGP-1 purified to apparent homogeneity and confirmed its identity by immunoblotting and mass spectrometry. AGP-1 alone upregulated MAPK signaling in murine peritoneal macrophages. However, when given in combination with TLR ligands, AGP-1 selectively augmented MAPK activation induced by ligands of TLR-2 (Braun lipoprotein) but not TLR-4 (lipopolysaccharide). In vivo treatment of AGP-1 in a murine model of sepsis with or without TLR-2 or TLR-4 ligands, selectively potentiated TLR-2-mediated mortality, but was without significant effect on TLR-4-mediated mortality. Furthermore, in vitro, AGP-1 selectively potentiated TLR-2 mediated adhesion of human primary immune cell, neutrophils. Hence, our studies highlight a new role for the acute phase protein AGP-1 in sepsis via its interaction with TLR-2 signaling mechanisms to selectively promote responsiveness to one of the two major gram-negative endotoxins, contributing to the complicated pathobiology of sepsis.


Assuntos
Proteínas de Fase Aguda/metabolismo , Orosomucoide/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Adesão Celular/genética , Adesão Celular/imunologia , Endotoxemia/etiologia , Endotoxemia/metabolismo , Endotoxemia/mortalidade , Feminino , Inflamação/etiologia , Inflamação/metabolismo , Lipopolissacarídeos/imunologia , Lipoproteínas/metabolismo , Sistema de Sinalização das MAP Quinases , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , Modelos Biológicos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Orosomucoide/isolamento & purificação , Transdução de Sinais/efeitos dos fármacos , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética
4.
Int J Mol Sci ; 20(5)2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30845751

RESUMO

Lysophosphatidylcholine (LPC) is increasingly recognized as a key marker/factor positively associated with cardiovascular and neurodegenerative diseases. However, findings from recent clinical lipidomic studies of LPC have been controversial. A key issue is the complexity of the enzymatic cascade involved in LPC metabolism. Here, we address the coordination of these enzymes and the derangement that may disrupt LPC homeostasis, leading to metabolic disorders. LPC is mainly derived from the turnover of phosphatidylcholine (PC) in the circulation by phospholipase A2 (PLA2). In the presence of Acyl-CoA, lysophosphatidylcholine acyltransferase (LPCAT) converts LPC to PC, which rapidly gets recycled by the Lands cycle. However, overexpression or enhanced activity of PLA2 increases the LPC content in modified low-density lipoprotein (LDL) and oxidized LDL, which play significant roles in the development of atherosclerotic plaques and endothelial dysfunction. The intracellular enzyme LPCAT cannot directly remove LPC from circulation. Hydrolysis of LPC by autotaxin, an enzyme with lysophospholipase D activity, generates lysophosphatidic acid, which is highly associated with cancers. Although enzymes with lysophospholipase A1 activity could theoretically degrade LPC into harmless metabolites, they have not been found in the circulation. In conclusion, understanding enzyme kinetics and LPC metabolism may help identify novel therapeutic targets in LPC-associated diseases.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Lisofosfatidilcolinas/metabolismo , Doenças Metabólicas/metabolismo , Fosfolipases A2/metabolismo , Homeostase , Humanos , Hidrólise , Lipoproteínas LDL/metabolismo , Doenças Metabólicas/enzimologia , Fosfatidilcolinas/metabolismo , Diester Fosfórico Hidrolases/metabolismo
5.
Reprod Fertil Dev ; 30(5): 744-751, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29136399

RESUMO

Female sperm storage is an intriguing adaptation exhibited by a wide array of both vertebrates and invertebrates. The mechanisms underlying female sperm storage have remained elusive. Using the Indian garden lizard Calotes versicolor as a model organism, we investigated the role of low and high molecular weight factors in this phenomenon. Previously, we demonstrated three distinct phases of the reproductive cycle in this animal with live, motile spermatozoa recovered from the uterovaginal region during the reproductive phase. In the present study, we analysed the uterovaginal contents using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and identified an abundant protein band corresponding to ~55 kDa regardless of the phase of the reproductive cycle. Analysis of the purified protein by liquid chromatography-tandem mass spectrometry suggested a unique protein without any homology to the National Center for Biotechnology Information database. Exogenous addition of this protein to washed spermatozoa derived from the epididymis reversibly inhibited sperm motility in a concentration- and time-dependent manner, suggesting it plays a key role in sperm storage. These studies are likely to offer new avenues to unravel the secrets of female sperm storage seen across the animal taxa and may have novel applications not only in reproductive biology, but also in general cell storage and preserving endangered animal species.


Assuntos
Proteínas Motores Moleculares/metabolismo , Espermatozoides/citologia , Útero/fisiologia , Vagina/fisiologia , Animais , Feminino , Lagartos , Masculino , Reprodução/fisiologia , Motilidade dos Espermatozoides/fisiologia
6.
J Med Chem ; 59(3): 1032-40, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26766134

RESUMO

Sphingomyelinase (SMase) catalyzes the degradation of sphingomyelin to ceramide. In patients with metabolic syndrome or diabetes, circulating plasma ceramide levels are significantly higher than in normal individuals. Our data indicate that electronegative low-density lipoprotein (LDL) shows SMase activity, which leads to increased ceramide levels that can produce pro-inflammatory effects and susceptibility to aggregation. According to sequence alignment and protein structure predictions, the putative catalytic site of SMase activity is in the α2 region of apoB-100. To identify specific post-translational modifications of apoB100 near the catalytic region, we performed data-independent, parallel-fragmentation liquid chromatography/mass spectrometry (LC/MS(E)), followed by data analysis with ProteinLynx GlobalServer v2.4. Results showed that the serine of apoB100 in electronegative LDL was highly O-glycosylated, including S(1732), S(1959), S(2378), S(2408), and S(2429). These findings may support the changing of the α-helix/ß-pleated sheets ratio in protein structure analysis. Further study is necessary to confirm the activation of SMase activity by electronegative LDL.


Assuntos
Apoptose/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Lipoproteínas LDL/farmacologia , Esfingomielina Fosfodiesterase/metabolismo , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Humanos , Lipoproteínas LDL/química , Modelos Moleculares , Estrutura Molecular , Staphylococcus aureus/citologia , Staphylococcus aureus/enzimologia , Relação Estrutura-Atividade
7.
Temperature (Austin) ; 2(4): 449-50, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27227061

RESUMO

Concordance between lipopolysaccharide and platelet activating factor - mediated events have suggested that the latter likely mediates all effects induced by the former. In this issue of Temperature, Steiner and Romanovsky challenge this notion, showing that while platelet activating factor is a potent pyrogenic mediator, the thermoregulatory responses to lipopolysaccharide are instead induced by prostaglandins.

8.
J Biol Chem ; 288(17): 11940-8, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23508960

RESUMO

Aspirin is rapidly hydrolyzed within erythrocytes by a heterodimer of PAFAH1b2/PAFAH1b3 but also in plasma by an unidentified activity. Hydrolysis in both compartments was variable, with a 12-fold variation in plasma among 2226 Cleveland Clinic GeneBank patients. Platelet inhibition by aspirin was suppressed in plasma that rapidly hydrolyzed aspirin. Plasma aspirin hydrolysis was significantly higher in patients with coronary artery disease compared with control subjects (16.5 ± 4.4 versus 15.1 ± 3.7 nmol/ml/min; p = 3.4 × 10(-8)). A genome-wide association study of 2054 GeneBank subjects identified a single locus immediately adjacent to the BCHE (butyrylcholinesterase) gene associated with plasma aspirin hydrolytic activity (lead SNP, rs6445035; p = 9.1 × 10(-17)). However, its penetrance was low, and plasma from an individual with an inactivating mutation in BCHE still effectively hydrolyzed aspirin. A second aspirin hydrolase was identified in plasma, the purification of which showed it to be homomeric PAFAH1b2. This is distinct from the erythrocyte PAFAH1b2/PAFAH1b3 heterodimer. Inhibitors showed that both butyrylcholinesterase (BChE) and PAFAH1b2 contribute to aspirin hydrolysis in plasma, with variation primarily reflecting non-genetic variation of BChE activity. Therefore, aspirin is hydrolyzed in plasma by two enzymes, BChE and a new extracellular form of platelet-activating factor acetylhydrolase, PAFAH1b2. Hydrolytic effectiveness varies widely primarily from non-genetic variation of BChE activity that affects aspirin bioavailability in blood and the ability of aspirin to inhibit platelet aggregation.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/sangue , Aspirina/farmacocinética , Plaquetas/enzimologia , Butirilcolinesterase/sangue , Proteínas Associadas aos Microtúbulos/sangue , Plasma/enzimologia , Inibidores da Agregação Plaquetária/farmacocinética , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Aspirina/farmacologia , Butirilcolinesterase/genética , Doença da Artéria Coronariana/tratamento farmacológico , Doença da Artéria Coronariana/enzimologia , Doença da Artéria Coronariana/genética , Estudo de Associação Genômica Ampla , Humanos , Hidrólise , Proteínas Associadas aos Microtúbulos/genética , Inibidores da Agregação Plaquetária/farmacologia , Polimorfismo de Nucleotídeo Único
9.
Int J Biol Macromol ; 55: 39-46, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23305704

RESUMO

Hyaluronidase inhibitors have immense applications in pathophysiological conditions associated with hyaluronan-hyaluronidase system. The present study demonstrates the inhibitory efficacy of clinically accepted antioxidant N-acetyl cysteine (NAC) against hyaluronidase of serum, testis, and snake and bee venoms. The experimental and molecular dynamic simulation data suggest the non-competitive inhibition and involvement of thiol groups of both NAC and glutathione in exertion of inhibition. The bioavailability, less-toxic and antioxidant nature of NAC and glutathione could become valuable in the management of pathologies triggered by extracellular matrix degradation and to increase the endurance of hyaluronan based biomaterials/supplements, which are highly exciting aspects.


Assuntos
Acetilcisteína/farmacologia , Glutationa/farmacologia , Hialuronoglucosaminidase/antagonistas & inibidores , Acetilcisteína/química , Acetilcisteína/metabolismo , Animais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Glutationa/química , Glutationa/metabolismo , Hialuronoglucosaminidase/química , Hialuronoglucosaminidase/metabolismo , Cinética , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica
10.
J Biol Chem ; 287(21): 17693-17705, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-22433871

RESUMO

TNFα generates reactive oxygen species (ROS) at the cell surface that induce cell death, but how ROS communicate to mitochondria and their specific apoptotic action(s) are both undefined. ROS oxidize phospholipids to hydroperoxides that are friable and fragment adjacent to the (hydro)peroxide function, forming truncated phospholipids, such as azelaoyl phosphatidylcholine (Az-PC). Az-PC is relatively soluble, and exogenous Az-PC rapidly enters cells to damage mitochondrial integrity and initiate intrinsic apoptosis. We determined whether this toxic phospholipid is formed within cells during TNFα stimulation in sufficient quantities to induce apoptosis and if they are essential in TNFα-induced cytotoxicity. We found that TNFα induced ROS formation and phospholipid peroxidation in Jurkat cells, and either chemical interference with NADPH oxidase activity or siRNA suppression of the NADPH oxidase-4 subunit blocked ROS accumulation and phospholipid peroxidation. Mass spectrometry showed that phospholipid peroxides and then Az-PC increased after TNFα exposure, whereas ROS inhibition abolished Az-PC accumulation and TNFα-induced cell death. Glutathione peroxidase-4 (GPx4), which specifically metabolizes lipid hydroperoxides, fell in TNFα-stimulated cells prior to death. Ectopic GPx4 overcame this, reduced peroxidized phospholipid accumulation, blocked Az-PC accumulation, and prevented death. Conversely, GPx4 siRNA knockdown enhanced phospholipid peroxidation, increasing TNFα-stimulated Az-PC formation and apoptosis. Truncated phospholipids were essential elements of TNFα-induced apoptosis because overexpression of PAFAH2 (a phospholipase A(2) that selectively hydrolyzes truncated phospholipids) blocked TNFα-induced Az-PC accumulation without affecting phospholipid peroxidation. PAFAH2 also abolished apoptosis. Thus, phospholipid oxidation and truncation to apoptotic phospholipids comprise an essential element connecting TNFα receptor signaling to mitochondrial damage and apoptotic death.


Assuntos
Apoptose/fisiologia , Peroxidação de Lipídeos/fisiologia , Peróxidos Lipídicos/metabolismo , Mitocôndrias/metabolismo , Fosfolipídeos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterase/biossíntese , Regulação Enzimológica da Expressão Gênica/fisiologia , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Humanos , Células Jurkat , Peróxidos Lipídicos/genética , Mitocôndrias/genética , NADPH Oxidase 4 , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Fosfolipídeos/genética , Fator de Necrose Tumoral alfa/genética
11.
J Biol Chem ; 286(40): 34820-9, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21844189

RESUMO

Aspirin (acetylsalicylic acid) prophylaxis suppresses major adverse cardiovascular events, but its rapid turnover limits inhibition of platelet cyclooxygenase activity and thrombosis. Despite its importance, the identity of the enzyme(s) that hydrolyzes the acetyl residue of circulating aspirin, which must be an existing enzyme, remains unknown. We find that circulating aspirin was extensively hydrolyzed within erythrocytes, and chromatography indicated these cells contained a single hydrolytic activity. Purification by over 1400-fold and sequencing identified the PAFAH1B2 and PAFAH1B3 subunits of type I platelet-activating factor (PAF) acetylhydrolase, a phospholipase A(2) with selectivity for acetyl residues of PAF, as a candidate for aspirin acetylhydrolase. Western blotting showed that catalytic PAFAH1B2 and PAFAH1B3 subunits of the type I enzyme co-migrated with purified erythrocyte aspirin hydrolytic activity. Recombinant PAFAH1B2, but not its family member plasma PAF acetylhydrolase, hydrolyzed aspirin, and PAF competitively inhibited aspirin hydrolysis by purified or recombinant erythrocyte enzymes. Aspirin was hydrolyzed by HEK cells transfected with PAFAH1B2 or PAFAH1B3, and the competitive type I PAF acetylhydrolase inhibitor NaF reduced erythrocyte hydrolysis of aspirin. Exposing aspirin to erythrocytes blocked its ability to inhibit thromboxane A(2) synthesis and platelet aggregation. Not all individuals or populations are equally protected by aspirin prophylaxis, the phenomenon of aspirin resistance, and erythrocyte hydrolysis of aspirin varied 3-fold among individuals, which correlated with PAFAH1B2 and not PAFAH1B3. We conclude that intracellular type I PAF acetylhydrolase is the major aspirin hydrolase of human blood.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Aspirina/farmacologia , Proteínas Associadas aos Microtúbulos/sangue , 1-Alquil-2-acetilglicerofosfocolina Esterase/sangue , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Sequência de Aminoácidos , Hidrolases de Éster Carboxílico/metabolismo , Cromatografia/métodos , Cromatografia em Gel , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Humanos , Hidrólise , Cinética , Espectrometria de Massas/métodos , Proteínas Associadas aos Microtúbulos/genética , Modelos Estatísticos , Dados de Sequência Molecular , Tripsina/química
12.
Bioorg Med Chem ; 19(1): 211-20, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21163661

RESUMO

An elevated level of blood uric acid (hyperuricemia) is the underlying cause of gout. Xanthine oxidase is the key enzyme that catalyzes the oxidation of hypoxanthine to xanthine and then to uric acid. Allopurinol, a widely used xanthine oxidase inhibitor is the most commonly used drug to treat gout. However, a small but significant portion of the population suffers from adverse effects of allopurinol that includes gastrointestinal upset, skin rashes and hypersensitivity reactions. Moreover, an elevated level of uric acid is considered as an independent risk factor for cardiovascular diseases. Therefore use of allopurinol-like drugs with minimum side effects is the ideal drug of choice against gout. In this study, we report the synthesis of a series of pyrimidin-5-one analogues as effective and a new class of xanthine oxidase inhibitors. All the synthesized pyrimidin-5-one analogues are characterized by spectroscopic techniques and elemental analysis. Four (6a, 6b, 6d and 6f) out of 20 synthesized molecules in this class showed good inhibition against three different sources of xanthine oxidase, which were more potent than allopurinol based on their respective IC(50) values. Molecular modeling and docking studies revealed that the molecule 6a has very good interactions with the Molybdenum-Oxygen-Sulfur (MOS) complex a key component in xanthine oxidase. These results highlight the identification of a new class of xanthine oxidase inhibitors that have potential to be more efficacious, than allopurinol, to treat gout and possibly against cardiovascular diseases.


Assuntos
Inibidores Enzimáticos/farmacologia , Supressores da Gota/farmacologia , Pirimidinonas/farmacologia , Xantina Oxidase/antagonistas & inibidores , Inibidores Enzimáticos/síntese química , Supressores da Gota/síntese química , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Pirimidinonas/síntese química , Espectrofotometria Infravermelho
13.
Circ Res ; 108(4): 469-77, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21183738

RESUMO

RATIONALE: The phospholipid platelet-activating factor (PAF) stimulates all cells of the innate immune system and numerous cardiovascular cells. A single enzyme (plasma PAF acetylhydrolase [PAF-AH] or lipoprotein-associated phospholipase [Lp-PL]A(2)) in plasma hydrolyzes PAF, but significant controversy exists whether its action is pro- or antiinflammatory and accordingly whether its inhibition will slow cardiovascular disease. OBJECTIVE: We sought to define how PAF and related short-chain oxidized phospholipids turnover in vivo and the role of PAF acetylhydrolase/Lp-PLA(2) in this process. METHODS AND RESULTS: [(3)H-acetyl]PAF was hydrolyzed by murine or human plasma (t(1/2), 3 and 7 minutes, respectively), but injected [(3)H-acetyl]PAF disappeared from murine circulation more quickly (t(1/2), <30 seconds). [(3)H]PAF clearance was unchanged in PAF receptor(-/-) animals, or over the first 2 half-lives in PAF-AH(-/-) animals. [(3)H]PAF turnover was reduced by coinjecting excess unlabeled PAF or an oxidatively truncated phospholipid, and [(3)H]PAF clearance was slowed in hyperlipidemic apolipoprotein (apo)E(-/-) mice with excess circulating oxidatively truncated phospholipids. [(3)H]PAF, fluorescent NBD-PAF, or fluorescent oxidatively truncated phospholipid were primarily accumulated by liver and lung, and were transported into endothelium as intact phospholipids through a common mechanism involving TMEM30a. CONCLUSIONS: Circulating PAF and oxidized phospholipids are continually and rapidly cleared, and hence continually and rapidly produced. Saturable PAF receptor-independent transport, rather than just intravascular hydrolysis, controls circulating inflammatory and proapoptotic oxidized phospholipid mediators. Intravascular PAF has access to intracellular compartments. Inflammatory and proapoptotic phospholipids may accumulate in the circulation as transport is overwhelmed by substrates in hyperlipidemia.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Endotélio Vascular/metabolismo , Fator de Ativação de Plaquetas/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Transporte Biológico/fisiologia , Células Cultivadas , Modelos Animais de Doenças , Endotélio Vascular/citologia , Humanos , Hidrólise , Hiperlipidemias/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfolipídeos/metabolismo , Glicoproteínas da Membrana de Plaquetas/genética , Glicoproteínas da Membrana de Plaquetas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
14.
Blood ; 113(26): 6699-706, 2009 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-19395675

RESUMO

Platelet activating factor (PAF) and PAF-like lipids induce inflammatory responses in target cells. These lipid mediators are inactivated by PAF-acetylhydrolase (PAF-AH). The PAF signaling system affects the growth of hematopoietic CD34(+) cells, but roles for PAF-AH in this process are unknown. Here, we investigated PAF-AH function during megakaryopoiesis and found that human CD34(+) cells accumulate this enzymatic activity as they differentiate toward megakaryocytes, consistent with the expression of mRNA and protein for the plasma PAF-AH isoform. Inhibition of endogenous PAF-AH activity in differentiated megakaryocytes increased formation of lipid mediators that signaled the PAF receptor (PAFR) in fully differentiated human cells such as neutrophils, as well as megakaryocytes themselves. PAF-AH also controlled megakaryocyte alpha(IIb)beta(3)-dependent adhesion, cell spreading, and mobility that relied on signaling through the PAFR. Together these data suggest that megakaryocytes generate PAF-AH to modulate the accumulation of intracellular phospholipid mediators that may detrimentally affect megakaryocyte development and function.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/fisiologia , Megacariócitos/metabolismo , Fosfolipídeos/metabolismo , Trombopoese/fisiologia , 1-Alquil-2-acetilglicerofosfocolina Esterase/biossíntese , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Sinalização do Cálcio , Adesão Celular , Células Cultivadas/citologia , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/metabolismo , Indução Enzimática , Sangue Fetal/citologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/enzimologia , Humanos , Interleucina-3/farmacologia , Megacariócitos/citologia , Megacariócitos/efeitos dos fármacos , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Glicoproteínas da Membrana de Plaquetas/fisiologia , RNA Mensageiro/biossíntese , Receptores Acoplados a Proteínas G/fisiologia , Fator de Células-Tronco/farmacologia , Trombopoese/efeitos dos fármacos , Trombopoetina/farmacologia
15.
J Immunol ; 182(5): 2842-8, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19234179

RESUMO

Recent studies have implicated the lipid mediator platelet-activating factor (PAF) in UVB-mediated systemic immunosuppression known to be a major cause for skin cancers. Previously, our group has demonstrated that UVB irradiation triggers the production of PAF and oxidized glycerophosphocholines that act as PAF-receptor (PAF-R) agonists. The present studies explored the mechanisms by which UVB generates PAF-R agonists. UVB irradiation of human epidermal KB cells resulted in both increased levels of reactive oxygen species (ROS) and PAF-R agonistic activity. Pretreatment of KB cells with antioxidants vitamin C and N-acetylcysteine or the pharmacological inhibitor PD168393 specific for the epidermal growth factor receptor all inhibited UVB-induced ROS as well as PAF-R agonists, yet had no effect on fMLP-mediated PAF-R agonist production. In addition, in vivo production of PAF-R agonists from UVB-irradiated mouse skin was blocked by both systemic vitamin C administration and topical PD168393 application. Moreover, both vitamin C and PD168393 abolished UVB-mediated but not the PAF-R agonist 1-hexadecyl-2-N-methylcarbamoyl glycerophosphocholine-mediated immunosuppression as measured by the inhibition of delayed type contact hypersensitivity to the chemical dinitrofluorobenzene. These studies suggest that UVB-induced systemic immunosuppression is due to epidermal growth factor receptor-mediated ROS which results in PAF-R agonist formation.


Assuntos
Receptores ErbB/fisiologia , Fator de Ativação de Plaquetas/metabolismo , Glicoproteínas da Membrana de Plaquetas/agonistas , Glicoproteínas da Membrana de Plaquetas/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/efeitos da radiação , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/efeitos da radiação , Raios Ultravioleta , Animais , Dermatite de Contato/etiologia , Dermatite de Contato/imunologia , Dermatite de Contato/metabolismo , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/efeitos da radiação , Receptores ErbB/efeitos da radiação , Humanos , Terapia de Imunossupressão , Células KB , Camundongos , Camundongos Pelados , Camundongos Endogâmicos C57BL , Fator de Ativação de Plaquetas/efeitos da radiação , Glicoproteínas da Membrana de Plaquetas/biossíntese , Espécies Reativas de Oxigênio/farmacologia , Receptores Acoplados a Proteínas G/biossíntese , Pele/imunologia , Pele/metabolismo , Pele/efeitos da radiação
16.
J Immunol ; 181(5): 3495-502, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18714022

RESUMO

Platelets express TLR4 receptors, but its ligand LPS does not directly activate thrombotic functions nor, obviously, transcription by these anucleate cells. Platelets, however, store information that changes their phenotype over a few hours in the form of unprocessed RNA transcripts. We show even low concentrations of LPS in the presence of soluble CD14 initiated splicing of unprocessed IL-1beta RNA, with translation and accumulation of IL-1beta protein. LPS was a more robust agonist for this response than thrombin. Platelets also contained cyclooxygenase-2 pre-mRNA, which also was spliced and translated after LPS stimulation. Flow cytometry and immunocytochemistry of platelets extensively purified by negative immunodepletion showed platelets contained IL-1beta, and quantitative assessment of white blood cell contamination by CD14 real time PCR confirms that leukocytes were not the IL-1beta source, nor were they required for platelet stimulation. LPS did not initiate rapid platelet responses, but over time did prime platelet aggregation to soluble agonists, induced actin rearrangement, and initiated granule secretion with P-selectin expression that resulted the coating of quiescent leukocytes with activated platelets. LPS is a direct agonist for platelets that allows these cells to directly participate in the innate immune response to bacteria.


Assuntos
Plaquetas/efeitos dos fármacos , Ciclo-Oxigenase 2/genética , Interleucina-1beta/genética , Lipopolissacarídeos/farmacologia , Splicing de RNA/efeitos dos fármacos , Plaquetas/metabolismo , Adesão Celular , Células Cultivadas , Humanos , Interleucina-1beta/análise , Leucócitos , Ativação Plaquetária , Agregação Plaquetária , RNA Mensageiro
17.
Prostaglandins Other Lipid Mediat ; 87(1-4): 1-8, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18555720

RESUMO

Ultraviolet light radiation (UVR) has profound effects upon human skin. Yet, the exact targets for UVR are unclear. Inasmuch as UVR is a known pro-oxidative stressor, one potential target for UVR could be oxidatively modified glycerophosphocholines (GPC). Importantly, recent studies demonstrate that these oxidized GPCs (ox-GPC) are potent agonists for the platelet-activating factor receptor and peroxisome proliferator-activated receptor gamma. This review discusses these new biologically active lipids and their down-stream receptor targets that provide a unique system of biosensors for detecting and responding to UVR photo-oxidation.


Assuntos
Fosfatidilcolinas/metabolismo , Raios Ultravioleta , Animais , Humanos , Queratinócitos/metabolismo , Oxirredução/efeitos da radiação , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Fosfatidilcolinas/uso terapêutico , Fator de Ativação de Plaquetas/metabolismo
18.
J Lipid Res ; 48(11): 2365-76, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17693621

RESUMO

Stimulated inflammatory cells synthesize platelet-activating factor (PAF), but lysates of these cells show little enhancement in PAF synthase activity. We show that human neutrophils contain intracellular plasma PAF acetylhydrolase (PLA2G7), an enzyme normally secreted by monocytes. The esterase inhibitors methyl arachidonoylfluorophosphonate (MAFP), its linoleoyl homolog, and Pefabloc inhibit plasma PAF acetylhydrolase. All of these inhibitors induced PAF accumulation by quiescent neutrophils and monocytes that was equivalent to agonist stimulation. Agonist stimulation after esterase inhibition did not further increase PAF accumulation. PAF acetylhydrolase activity in intact neutrophils was reduced, but not abolished, by agonist stimulation. Erythrocytes, which do not participate in the acute inflammatory response, inexplicably express the type I PAF acetylhydrolase, whose only known substrate is PAF. Inhibition of this enzyme by MAFP caused PAF accumulation by erythrocytes, which was hemolytic in the absence of PAF acetylhydrolase activity. We propose that PAF is continuously synthesized by a nonselective acyltransferase activity(ies) found even in noninflammatory cells as a component of membrane remodeling, which is then selectively and continually degraded by intracellular PAF acetylhydrolase activity to modulate PAF production.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Fator de Ativação de Plaquetas/biossíntese , Fator de Ativação de Plaquetas/metabolismo , Ácidos Araquidônicos/farmacologia , Esterases/antagonistas & inibidores , Humanos , Ácidos Linoleicos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Organofluorfosfonatos , Organofosfonatos/farmacologia , Sulfonas/farmacologia
19.
J Biol Chem ; 282(1): 100-8, 2007 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-17090529

RESUMO

Phospholipid hydroperoxide (PLOOH) degrading activity of high density lipoprotein (HDL)-derived paraoxonase-1 (PON1) was investigated, using peroxidized 1-palmitoyl-2-oleoyl phosphatidylcholine (PCOOH) as substrate and high performance thin layer chromatography for quantitative peroxide analysis. Incubation of PCOOH with PON1 resulted in decay of the latter and reciprocal buildup of oleic acid hydroperoxide (OAOOH) at rates unaffected by GSH or other reductants. A serine esterase inhibitor blocked this activity and a recombinant PON1 was devoid of it, raising the possibility that the activity represents platelet-activating factor acetylhydrolase (PAF-AH), an esterase that co-purifies with PON1 from HDL. This was verified by showing that a recombinant PAF-AH recapitulates the ability of natural PON1 to hydrolyze PCOOH and release OAOOH while having essentially no effect on parental PC. Furthermore, recombinant PAF-AH and natural PON1 were shown to have similar K(m) values for PCOOH hydrolysis. Finally, we found that recombinant PAF-AH, but not PON1, catalyzes PLOOH hydrolysis in peroxidized low density lipoprotein. We conclude from this study that PON1 is neither a PLOOH peroxidase nor hydrolase and that the phospholipase A(2)-like activity previously attributed to PON1 in natural enzyme preparations was actually due to novel PLOOH hydrolytic activity of contaminating PAF-AH.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/fisiologia , Arildialquilfosfatase/metabolismo , Fosfolipídeos/química , Animais , Catálise , Relação Dose-Resposta a Droga , Esterases/química , Ácidos Graxos/química , Humanos , Peróxido de Hidrogênio/química , Hidrólise , Cinética , Ligação Proteica , Coelhos , Proteínas Recombinantes/química
20.
J Biol Chem ; 280(42): 35448-57, 2005 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-16115894

RESUMO

Ultraviolet B light (UVB) causes cutaneous inflammation and cell death, but the agents responsible are not defined. These studies examined the role of the platelet-activating factor (PAF) signaling system in UVB-mediated effects. Expression of the PAF receptor in the PAF receptor-negative epidermoid cell line KB augmented apoptosis in response to UVB irradiation. Overexpression of the PAF receptor in primary human keratinocytes also enhanced UVB-mediated apoptosis in vitro, and it enhanced apoptosis in an in vivo model of human keratinocytes grafted onto severe combined immune-deficient (SCID) mice. To define the mechanism by which UVB activates the PAF receptor, we used mass spectrometry to demonstrate significant amounts of the C4 PAF analogs 1-alkyl-2-(butanoyl and butenoyl)-sn-glycero-3-phosphocholine, as well as native PAF in an epidermal cell line after UVB irradiation. Supplementing the cells with the precursor phospholipid 1-hexadecyl-2-arachidonoyl-sn-glycero-3-phosphocholine (HAPC) increased the amount of C4 PAF analogs recovered after UVB exposure. We irradiated HAPC directly and found, even in the absence of a photosensitizer, fragmentation to C4-PAF receptor ligands. We conclude UVB photo-oxidizes cellular phospholipids, creating PAF analogs that stimulate the PAF receptor to induce further PAF synthesis and apoptosis. PAF signaling may participate in the cutaneous inflammation that occurs during photo-aggravated dermatoses.


Assuntos
Éteres Fosfolipídicos/química , Fator de Ativação de Plaquetas/metabolismo , Pele/efeitos da radiação , Raios Ultravioleta , Animais , Apoptose , Cálcio/metabolismo , Caspase 3 , Caspases/metabolismo , Linhagem Celular , Transplante de Células , Cromatografia Líquida de Alta Pressão , Células Epidérmicas , Epiderme/efeitos da radiação , Humanos , Inflamação , Queratinócitos/citologia , Queratinócitos/efeitos da radiação , Ligantes , Luz , Lipídeos/química , Espectrometria de Massas , Camundongos , Camundongos SCID , Modelos Químicos , Neutrófilos/metabolismo , Oxigênio/metabolismo , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Fosforilação , Glicoproteínas da Membrana de Plaquetas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Fatores de Tempo , Tirosina/química , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA