Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Vaccines (Basel) ; 9(10)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34696297

RESUMO

Newcastle disease (ND) is one of the most economically important poultry diseases. Despite intensive efforts with current vaccination programs, this disease still occurs worldwide, causing significant mortality even in vaccinated flocks. This has been partially attributed to a gap in immunity during the post-hatch period due to the presence of maternal antibodies that negatively impact the replication of the commonly used live vaccines. In ovo vaccines have multiple advantages and present an opportunity to address this problem. Currently employed in ovo ND vaccines are recombinant herpesvirus of turkeys (HVT)-vectored vaccines expressing Newcastle disease virus (NDV) antigens. Although proven efficient, these vaccines have some limitations, such as delayed immunogenicity and the inability to administer a second HVT vaccine post-hatch. The use of live ND vaccines for in ovo vaccination is currently not applicable, as these are associated with high embryo mortality. In this study, recombinant NDV-vectored experimental vaccines containing an antisense sequence of avian interleukin 4 (IL4R) and their backbones were administered in ovo at different doses in 18-day-old commercial eggs possessing high maternal antibodies titers. The hatched birds were challenged with virulent NDV at 2 weeks-of-age. Post-hatch vaccine shedding, post-challenge survival, challenge virus shedding, and humoral immune responses were evaluated at multiple timepoints. Recombinant NDV (rNDV) vaccinated birds had significantly reduced post-hatch mortality compared with the wild-type LaSota vaccine. All rNDV vaccines were able to penetrate maternal immunity and induce a strong early humoral immune response. Further, the rNDV vaccines provided protection from clinical disease and significantly decreased virus shedding after early virulent NDV challenge at two weeks post-hatch. The post-challenge hemagglutination-inhibition antibody titers in the vaccinated groups remained comparable with the pre-challenge titers, suggesting the capacity of the studied vaccines to prevent efficient replication of the challenge virus. Post-hatch survival after vaccination with the rNDV-IL4R vaccines was dose-dependent, with an increase in survival as the dose decreased. This improved survival and the dose-dependency data suggest that novel attenuated in ovo rNDV-based vaccines that are able to penetrate maternal immunity to elicit a strong immune response as early as 14 days post-hatch, resulting in high or full protection from virulent challenge, show promise as a contributor to the control of Newcastle disease.

3.
Vaccines (Basel) ; 9(9)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34579191

RESUMO

In ovo vaccination has been employed by the poultry industry for over 20 years to control numerous avian diseases. Unfortunately, in ovo live vaccines against Newcastle disease have significant limitations, including high embryo mortality and the inability to induce full protection during the first two weeks of life. In this study, a recombinant live attenuated Newcastle disease virus vaccine containing the antisense sequence of chicken interleukin 4 (IL-4), rZJ1*L-IL4R, was used. The rZJ1*L-IL4R vaccine was administered in ovo to naïve specific pathogen free embryonated chicken eggs (ECEs) and evaluated against a homologous challenge. Controls included a live attenuated recombinant genotype VII vaccine based on the virus ZJ1 (rZJ1*L) backbone, the LaSota vaccine and diluent alone. In the first of two experiments, ECEs were vaccinated at 18 days of embryonation (DOE) with either 104.5 or 103.5 50% embryo infectious dose (EID50/egg) and chickens were challenged at 21 days post-hatch (DPH). In the second experiment, 103.5 EID50/egg of each vaccine was administered at 19 DOE, and chickens were challenged at 14 DPH. Chickens vaccinated with 103.5 EID50/egg of rZJ1*L-IL4R had hatch rates comparable to the group that received diluent alone, whereas other groups had significantly lower hatch rates. All vaccinated chickens survived challenge without displaying clinical disease, had protective hemagglutination inhibition titers, and shed comparable levels of challenge virus. The recombinant rZJ1*L-IL4R vaccine yielded lower post-vaccination mortality rates compared with the other in ovo NDV live vaccine candidates as well as provided strong protection post-challenge.

4.
Biochem Biophys Res Commun ; 450(2): 1070-5, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-24978308

RESUMO

Influenza virus remains a significant concern to public health, with the continued potential for a high fatality pandemic. Vaccination and antiviral therapeutics are effective measures to circumvent influenza virus infection, however, multiple strains have emerged that are resistant to the antiviral therapeutics currently on the market. With this considered, investigation of alternative antiviral therapeutics is being conducted. One such approach is to inhibit cleavage activation of the influenza virus hemagglutinin (HA), which is an essential step in the viral replication cycle that permits viral-endosome fusion. Therefore, targeting trypsin-like, host proteases responsible for HA cleavage in vivo may prove to be an effective therapeutic. Hepatocyte growth factor activator inhibitor 2 (HAI-2) is naturally expressed in the respiratory tract and is a potent inhibitor of trypsin-like serine proteases, some of which have been determined to cleave HA. In this study, we demonstrate that HAI-2 is an effective inhibitor of cleavage of HA from the human-adapted H1 and H3 subtypes. HAI-2 inhibited influenza virus H1N1 infection in cell culture, and HAI-2 administration showed protection in a mouse model of influenza. HAI-2 has the potential to be an effective, alternative antiviral therapeutic for influenza.


Assuntos
Antivirais/farmacologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Proteínas de Membrana/farmacologia , Infecções por Orthomyxoviridae/tratamento farmacológico , Animais , Antivirais/uso terapêutico , Cães , Feminino , Células HEK293 , Humanos , Vírus da Influenza A Subtipo H1N1/metabolismo , Vírus da Influenza A Subtipo H3N2/metabolismo , Células Madin Darby de Rim Canino , Proteínas de Membrana/química , Proteínas de Membrana/uso terapêutico , Camundongos Endogâmicos BALB C , Mimetismo Molecular , Oligopeptídeos/química , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Vírion/efeitos dos fármacos
5.
J Virol ; 87(9): 5161-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23449787

RESUMO

Influenza virus is well recognized to modulate host tropism and pathogenesis based on mutations in the proteolytic cleavage site of the viral hemagglutinin (HA), which activates HA and exposes the fusion peptide for membrane fusion. Instead of the conventional trypsin-mediated cleavage event, modification of the cleavage site allows extended use of host cell proteases and enhanced spread in vivo. For H1N1 influenza viruses, the mouse-adapted A/WSN/33 strain is known to replicate in the brain based on recruitment of plasminogen by the viral neuraminidase (NA), as well as a Ser-Tyr substitution at the P2 position of the HA cleavage site. Here, we show that an equivalent Ser-Tyr substitution has occurred in the HA of naturally occurring human H1N1 influenza viruses. We characterize one of these viruses (A/Beijing/718/2009), as well as the prototype A/California/04/2009 with a Ser-Tyr substitution in the cleavage site, and show that these HAs are preferentially cleaved by plasmin. Importantly, cleavage activation by plasmin/plasminogen was independent of the viral NA, suggesting a novel mechanism for HA cleavage activation. We show that the viral HA itself can recruit plasminogen for HA cleavage. We further show that cellular factors, as well as streptokinase from bacteria commonly coinfecting the respiratory tract of influenza patients, can be a source of activated plasminogen for plasmin-mediated cleavage of influenza virus HAs that contain a Ser-Tyr substitution in the cleavage site.


Assuntos
Fibrinolisina/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A Subtipo H1N1/metabolismo , Influenza Humana/enzimologia , Neuraminidase/metabolismo , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Animais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vírus da Influenza A Subtipo H1N1/enzimologia , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/patogenicidade , Influenza Humana/epidemiologia , Influenza Humana/virologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Neuraminidase/química , Neuraminidase/genética , Pandemias , Processamento de Proteína Pós-Traducional , Alinhamento de Sequência , Proteínas Virais/química , Proteínas Virais/genética , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA