Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Breed ; 37(4): 45, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28356783

RESUMO

Partial resistance quantitative trait loci (QTLs) Rphq11 and rphq16 against Puccinia hordei isolate 1.2.1 were previously mapped in seedlings of the mapping populations Steptoe/Morex and Oregon Wolfe Barleys, respectively. In this study, QTL mapping was performed at adult plant stage for the two mapping populations challenged with the same rust isolate. The results suggest that Rphq11 and rphq16 are effective only at seedling stage, and not at adult plant stage. The cloning of several genes responsible for partial resistance of barley to P. hordei will allow elucidation of the molecular basis of this type of plant defence. A map-based cloning approach requires to fine-map the QTL in a narrow genetic window. In this study, Rphq11 and rphq16 were fine-mapped using an approach aiming at speeding up the development of plant material and simplifying its evaluation. The plant materials for fine-mapping were identified from early plant materials developed to produce QTL-NILs. The material was first selected to carry the targeted QTL in heterozygous condition and susceptibility alleles at other resistance QTLs in homozygous condition. This strategy took four to five generations to obtain fixed QTL recombinants (i.e., homozygous resistant at the Rphq11 or rphq16 QTL alleles, homozygous susceptible at the non-targeted QTL alleles). In less than 2 years, Rphq11 was fine-mapped into a 0.2-cM genetic interval and a 1.4-cM genetic interval for rphq16. The strongest candidate gene for Rphq11 is a phospholipid hydroperoxide glutathione peroxidase. Thus far, no candidate gene was identified for rphq16.

2.
Theor Appl Genet ; 129(2): 289-304, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26542283

RESUMO

KEY MESSAGE: Rphq2, a minor gene for partial resistance to Puccinia hordei , was physically mapped in a 188 kbp introgression with suppressed recombination between haplotypes of rphq2 and Rphq2 barley cultivars. ABSTRACT: Partial and non-host resistances to rust fungi in barley (Hordeum vulgare) may be based on pathogen-associated molecular pattern (PAMP)-triggered immunity. Understanding partial resistance may help to understand non-host resistance, and vice versa. We constructed two non-gridded BAC libraries from cultivar Vada and line SusPtrit. Vada is immune to non-adapted Puccinia rust fungi, and partially resistant to P. hordei. SusPtrit is susceptible to several non-adapted rust fungi, and has been used for mapping QTLs for non-host and partial resistance. The BAC libraries help to identify genes determining the natural variation for partial and non-host resistances of barley to rust fungi. A major-effect QTL, Rphq2, for partial resistance to P. hordei was mapped in a complete Vada and an incomplete SusPtrit contig. The physical distance between the markers flanking Rphq2 was 195 Kbp in Vada and at least 226 Kbp in SusPtrit. This marker interval was predicted to contain 12 genes in either accession, of which only five genes were in common. The haplotypes represented by Vada and SusPtrit were found in 57 and 43%, respectively, of a 194 barley accessions panel. The lack of homology between the two haplotypes probably explains the suppression of recombination in the Rphq2 area and limit further genetic resolution in fine mapping. The possible candidate genes for Rphq2 encode peroxidases, kinases and a member of seven-in-absentia protein family. This result suggests that Rphq2 does not belong to the NB-LRR gene family and does not resemble any of the partial resistance genes cloned previously.


Assuntos
Resistência à Doença/genética , Genes de Plantas , Hordeum/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Basidiomycota , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos , DNA de Plantas/genética , Biblioteca Gênica , Haplótipos , Hordeum/microbiologia , Anotação de Sequência Molecular , Fenótipo , Doenças das Plantas/microbiologia , Análise de Sequência de DNA , Transcriptoma
3.
Theor Appl Genet ; 127(2): 325-37, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24247233

RESUMO

KEY MESSAGE: We developed 'Golden SusPtrit', i.e., a barley line combining SusPtrit's high susceptibility to non-adapted rust fungi with the high amenability of Golden Promise for transformation. Nonhost and partial resistance to Puccinia rust fungi in barley are polygenically inherited. These types of resistance are principally prehaustorial, show high diversity between accessions of the plant species and are genetically associated. To study nonhost and partial resistance, as well as their association, candidate gene(s) for resistance must be cloned and tested in susceptible material where SusPtrit would be the line of choice. Unfortunately, SusPtrit is not amenable to Agrobacterium-mediated transformation. Therefore, a doubled haploid (DH) mapping population (n = 122) was created by crossing SusPtrit with Golden Promise to develop a 'Golden SusPtrit', i.e., a barley line combining SusPtrit's high susceptibility to non-adapted rust fungi with the high amenability of Golden Promise for transformation. We identified nine genomic regions occupied by resistance quantitative trait loci (QTLs) against four non-adapted rust fungi and P. hordei isolate 1.2.1 (Ph.1.2.1). Four DHs were selected for an Agrobacterium-mediated transformation efficiency test. They were among the 12 DH lines most susceptible to the tested non-adapted rust fungi. The most efficiently transformed DH line was SG062N (11-17 transformants per 100 immature embryos). The level of non-adapted rust infection on SG062N is either similar to or higher than the level of infection on SusPtrit. Against Ph.1.2.1, the latency period conferred by SG062N is as short as that conferred by SusPtrit. SG062N, designated 'Golden SusPtrit', will be a valuable experimental line that could replace SusPtrit in nonhost and partial resistance studies, especially for stable transformation using candidate genes that may be involved in rust-resistance mechanisms.


Assuntos
Fungos/patogenicidade , Hordeum/genética , Sequência de Bases , Linhagem Celular Transformada , Primers do DNA , Haploidia , Hordeum/microbiologia , Reação em Cadeia da Polimerase , Locos de Características Quantitativas
4.
Theor Appl Genet ; 114(6): 1091-103, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17345060

RESUMO

A microsatellite or simple sequence repeat (SSR) consensus map of barley was constructed by joining six independent genetic maps based on the mapping populations 'Igri x Franka', 'Steptoe x Morex', 'OWB(Rec) x OWB(Dom)', 'Lina x Canada Park', 'L94 x Vada' and 'SusPtrit x Vada'. Segregation data for microsatellite markers from different research groups including SCRI (Bmac, Bmag, EBmac, EBmag, HVGeneName, scsssr), IPK (GBM, GBMS), WUR (GBM), Virginia Polytechnic Institute (HVM), and MPI for Plant Breeding (HVGeneName), generated in above mapping populations, were used in the computer program RECORD to order the markers of the individual linkage data sets. Subsequently, a framework map was constructed for each chromosome by integrating the 496 "bridge markers" common to two or more individual maps with the help of the computer programme JoinMap 3.0. The final map was calculated by following a "neighbours" map approach. The integrated map contained 775 unique microsatellite loci, from 688 primer pairs, ranging from 93 (6H) to 132 (2H) and with an average of 111 markers per linkage group. The genomic DNA-derived SSR marker loci had a higher polymorphism information content value (average 0.61) as compared to the EST/gene-derived SSR loci (average 0.48). The consensus map spans 1,068 cM providing an average density of one SSR marker every 1.38 cM. Such a high-density consensus SSR map provides barley molecular breeding programmes with a better choice regarding the quality of markers and a higher probability of polymorphic markers in an important chromosomal interval. This map also offers the possibilities of thorough alignment for the (future) physical map and implementation in haplotype diversity studies of barley.


Assuntos
Mapeamento Cromossômico , Genes de Plantas , Marcadores Genéticos , Hordeum/genética , Repetições de Microssatélites , Cromossomos Artificiais Bacterianos , Cromossomos de Plantas , Cruzamentos Genéticos , Primers do DNA , DNA de Plantas , Etiquetas de Sequências Expressas , Biblioteca Gênica , Ligação Genética , Genética Populacional , Genoma de Planta , Software
5.
Theor Appl Genet ; 114(3): 487-500, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17115126

RESUMO

A consensus map of barley was constructed based on three reference doubled haploid (DH) populations and three recombinant inbred line (RIL) populations. Several sets of microsatellites were used as bridge markers in the integration of those populations previously genotyped with RFLP or with AFLP markers. Another set of 61 genic microsatellites was mapped for the first time using a newly developed fluorescent labelling strategy, referred to as A/T labelling. The final map contains 3,258 markers spanning 1,081 centiMorgans (cM) with an average distance between two adjacent loci of 0.33 cM. This is the highest density of markers reported for a barley genetic map to date. The consensus map was divided into 210 BINs of about 5 cM each in which were placed 19 quantitative trait loci (QTL) contributing to the partial resistance to barley leaf rust (Puccinia hordei Otth) in five of the integrated populations. Each parental barley combination segregated for different sets of QTLs, with only few QTLs shared by any pair of cultivars. Defence gene homologues (DGH) were identified by tBlastx homology to known genes involved in the defence of plants against microbial pathogens. Sixty-three DGHs were located into the 210 BINs in order to identify candidate genes responsible for the QTL effects. Eight BINs were co-occupied by a QTL and DGH(s). The positional candidates identified are receptor-like kinase, WIR1 homologues and several defence response genes like peroxidases, superoxide dismutase and thaumatin.


Assuntos
Basidiomycota/fisiologia , Mapeamento Cromossômico , Genes de Plantas , Hordeum/genética , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Locos de Características Quantitativas/genética , Distribuição de Qui-Quadrado , Segregação de Cromossomos , Cromossomos de Plantas/genética , Ligação Genética , Marcadores Genéticos , Imunidade Inata/genética , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Plântula/genética , Plântula/microbiologia , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA