Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(10): 107832, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37829199

RESUMO

Live birth (viviparity) has arisen repeatedly and independently among animals. We sequenced the genome and transcriptome of the viviparous Pacific beetle-mimic cockroach and performed comparative analyses with two other viviparous insect lineages, tsetse flies and aphids, to unravel the basis underlying the transition to viviparity in insects. We identified pathways undergoing adaptive evolution for insects, involved in urogenital remodeling, tracheal system, heart development, and nutrient metabolism. Transcriptomic analysis of cockroach and tsetse flies revealed that uterine remodeling and nutrient production are increased and the immune response is altered during pregnancy, facilitating structural and physiological changes to accommodate and nourish the progeny. These patterns of convergent evolution of viviparity among insects, together with similar adaptive mechanisms identified among vertebrates, highlight that the transition to viviparity requires changes in urogenital remodeling, enhanced tracheal and heart development (corresponding to angiogenesis in vertebrates), altered nutrient metabolism, and shifted immunity in animal systems.

2.
Biosens Bioelectron ; 217: 114663, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36150327

RESUMO

The SARS-CoV-2 pandemic has highlighted the need for improved technologies to help control the spread of contagious pathogens. While rapid point-of-need testing plays a key role in strategies to rapidly identify and isolate infectious patients, current test approaches have significant shortcomings related to assay limitations and sample type. Direct quantification of viral shedding in exhaled particles may offer a better rapid testing approach, since SARS-CoV-2 is believed to spread mainly by aerosols. It assesses contagiousness directly, the sample is easy and comfortable to obtain, sampling can be standardized, and the limited sample volume lends itself to a fast and sensitive analysis. In view of these benefits, we developed and tested an approach where exhaled particles are efficiently sampled using inertial impaction in a micromachined silicon chip, followed by an RT-qPCR molecular assay to detect SARS-CoV-2 shedding. Our portable, silicon impactor allowed for the efficient capture (>85%) of respiratory particles down to 300 nm without the need for additional equipment. We demonstrate using both conventional off-chip and in-situ PCR directly on the silicon chip that sampling subjects' breath in less than a minute yields sufficient viral RNA to detect infections as early as standard sampling methods. A longitudinal study revealed clear differences in the temporal dynamics of viral load for nasopharyngeal swab, saliva, breath, and antigen tests. Overall, after an infection, the breath-based test remains positive during the first week but is the first to consistently report a negative result, putatively signalling the end of contagiousness and further emphasizing the potential of this tool to help manage the spread of airborne respiratory infections.


Assuntos
Técnicas Biossensoriais , COVID-19 , COVID-19/diagnóstico , Humanos , Estudos Longitudinais , RNA Viral/análise , Aerossóis e Gotículas Respiratórios , SARS-CoV-2 , Silício
3.
Int J Mol Sci ; 23(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36012497

RESUMO

Ecdysteroids are widely investigated for their role during the molting cascade in insects; however, they are also involved in the development of the female reproductive system. Ecdysteroids are synthesized from cholesterol, which is further converted via a series of enzymatic steps into the main molting hormone, 20-hydoxyecdysone. Most of these biosynthetic conversion steps involve the activity of cytochrome P450 (CYP) hydroxylases, which are encoded by the Halloween genes. Three of these genes, spook (spo), phantom (phm) and shade (shd), were previously characterized in the desert locust, Schistocerca gregaria. Based on recent sequencing data, we have now identified the sequences of disembodied (dib) and shadow (sad), for which we also analyzed spatiotemporal expression profiles using qRT-PCR. Furthermore, we investigated the possible role(s) of five different Halloween genes in the oogenesis process by means of RNA interference mediated knockdown experiments. Our results showed that depleting the expression of SchgrSpo, SchgrSad and SchgrShd had a significant impact on oocyte development, oviposition and hatching of the eggs. Moreover, the shape of the growing oocytes, as well as the deposited eggs, was very drastically altered by the experimental treatments. Consequently, it can be proposed that these three enzymes play an important role in oogenesis.


Assuntos
Ecdisteroides , Gafanhotos , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Ecdisteroides/metabolismo , Feminino , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Oócitos/metabolismo , Oogênese/genética , Oviposição/genética
4.
Int J Infect Dis ; 123: 25-33, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35932968

RESUMO

OBJECTIVES: We performed exhaled breath (EB) and nasopharyngeal (NP) quantitative polymerase chain reaction (qPCR) and NP rapid antigen testing (NP RAT) of SARS-CoV-2 infections with different variants. METHODS: We included immuno-naïve alpha-infected (n = 11) and partly boosted omicron-infected patients (n = 8) as high-risk contacts. We compared peak NP and EB qPCR cycle time (ct) values between cohorts (Wilcoxon-Mann-Whitney test). Test positivity was compared for three infection phases using Cochran Q test. RESULTS: Peak median NP ct was 11.5 (interquartile range [IQR] 10.1-12.1) for alpha and 12.2 (IQR 11.1-15.3) for omicron infections. Peak median EB ct was 25.2 (IQR 24.5-26.9) and 28.3 (IQR 26.4-30.8) for alpha and omicron infections, respectively. Distributions did not differ between cohorts for NP (P = 0.19) or EB (P = 0.09). SARS-CoV-2 shedding peaked on day 1 in EB (confidence interval [CI] 0.0 - 4.5) and day 3 in NP (CI 1.5 - 6.0). EB qPCR positivity equaled NP qPCR positivity on D0-D1 (P = 0.44) and D2-D6 (P = 1.0). It superseded NP RAT positivity on D0-D1 (P = 0.003) and D2-D6 (P = 0.008). It was inferior to both on D7-D10 (P < 0.001). CONCLUSION: Peak EB and nasopharynx shedding were comparable across variants. EB qPCR positivity matched NP qPCR and superseded NP RAT in the first week of infection.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Teste para COVID-19 , Humanos , Nasofaringe , Sistema Respiratório
5.
J Insect Physiol ; 136: 104326, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34767790

RESUMO

We compiled a comprehensive list of 67 precursor genes encoding neuropeptides and neuropeptide-like peptides using the Schistocerca gregaria genome and several transcriptome datasets. 11 of these 67 precursor genes have alternative transcripts, bringing the total number of S. gregaria precursors identified in this study to 81. Based on this precursor information, we used different mass spectrometry approaches to identify the putative mature, bioactive peptides processed in the nervous system of S. gregaria. The thereby generated dataset for S. gregaria confirms significant conservation of the entire neuropeptidergic gene set typical of insects and also contains precursors typical of Polyneoptera only. This is in striking contrast to the substantial losses of peptidergic systems in some holometabolous species. The neuropeptidome of S. gregaria, apart from species-specific sequences within the known range of variation, is quite similar to that of Locusta migratoria and even to that of less closely related Polyneoptera. With the S. gregaria peptidomics data presented here, we have thus generated a very useful source of information that could also be relevant for the study of other polyneopteran species.


Assuntos
Gafanhotos , Locusta migratoria , Neuropeptídeos , Sequência de Aminoácidos , Animais , Gafanhotos/genética , Insetos , Espectrometria de Massas , Neuropeptídeos/genética
6.
Int J Mol Sci ; 22(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34948262

RESUMO

Accurate control of innate behaviors associated with developmental transitions requires functional integration of hormonal and neural signals. Insect molting is regulated by a set of neuropeptides, which trigger periodic pulses in ecdysteroid hormone titers and coordinate shedding of the old cuticle during ecdysis. In the current study, we demonstrate that crustacean cardioactive peptide (CCAP), a structurally conserved neuropeptide described to induce the ecdysis motor program, also exhibits a previously unknown prothoracicostatic activity to regulate ecdysteroid production in the desert locust, Schistocerca gregaria. We identified the locust genes encoding the CCAP precursor and three G protein-coupled receptors that are activated by CCAP with EC50 values in the (sub)nanomolar range. Spatiotemporal expression profiles of the receptors revealed expression in the prothoracic glands, the endocrine organs where ecdysteroidogenesis occurs. RNAi-mediated knockdown of CCAP precursor or receptors resulted in significantly elevated transcript levels of several Halloween genes, which encode ecdysteroid biosynthesis enzymes, and in elevated ecdysteroid levels one day prior to ecdysis. Moreover, prothoracic gland explants exhibited decreased secretion of ecdysteroids in the presence of CCAP. Our results unequivocally identify CCAP as the first prothoracicostatic peptide discovered in a hemimetabolan species and reveal the existence of an intricate interplay between CCAP signaling and ecdysteroidogenesis.


Assuntos
Gafanhotos/metabolismo , Muda/fisiologia , Neuropeptídeos/metabolismo , Animais , Ecdisteroides/genética , Expressão Gênica/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Gafanhotos/genética , Gafanhotos/fisiologia , Hormônios de Inseto/metabolismo , Neuropeptídeos/fisiologia , Peptídeos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
7.
Biomolecules ; 11(2)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572050

RESUMO

Currently (2020), Africa and Asia are experiencing the worst desert locust (Schistocerca gregaria) plague in decades. Exceptionally high rainfall in different regions caused favorable environmental conditions for very successful reproduction and population growth. To better understand the molecular mechanisms responsible for this remarkable reproductive capacity, as well as to fill existing knowledge gaps regarding the regulation of male reproductive physiology, we investigated the role of methoprene-tolerant (Scg-Met) and Taiman (Scg-Tai), responsible for transducing the juvenile hormone (JH) signal, in adult male locusts. We demonstrated that knockdown of these components by RNA interference strongly inhibits male sexual maturation, severely disrupting reproduction. This was evidenced by the inability to show mating behavior, the absence of a yellow-colored cuticle, the reduction of relative testes weight, and the drastically reduced phenylacetonitrile (PAN) pheromone levels of the treated males. We also observed a reduced relative weight, as well as relative protein content, of the male accessory glands in Scg-Met knockdown locusts. Interestingly, in these animals the size of the corpora allata (CA), the endocrine glands where JH is synthesized, was significantly increased, as well as the transcript level of JH acid methyltransferase (JHAMT), a rate-limiting enzyme in the JH biosynthesis pathway. Moreover, other endocrine pathways appeared to be affected by the knockdown, as evidenced by changes in the expression levels of the insulin-related peptide and two neuroparsins in the fat body. Our results demonstrate that JH signaling pathway components play a crucial role in male reproductive physiology, illustrating their potential as molecular targets for pest control.


Assuntos
Adaptação Fisiológica , Gafanhotos/fisiologia , Hormônios Juvenis/fisiologia , Metoprene/farmacologia , Receptores de Superfície Celular/metabolismo , Maturidade Sexual/fisiologia , Animais , Hormônios Juvenis/metabolismo , Masculino , Interferência de RNA , Reprodução , Transdução de Sinais
8.
Int J Mol Sci ; 21(20)2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053862

RESUMO

Postembryonic development of insects is coordinated by juvenile hormone (JH) together with ecdysteroids. Whereas the JH early response gene krüppel-homolog 1 (Kr-h1) plays a crucial role in the maintenance of juvenile characteristics during consecutive larval stages, the ecdysteroid-inducible early gene E93 appears to be a key factor promoting metamorphosis and adult morphogenesis. Here, we report on the developmental and molecular consequences of an RNAi-mediated knockdown of SgE93 in the desert locust, Schistocerca gregaria, a hemimetabolan species. Our experimental data show that injection of gregarious locust nymphs with a double-stranded RNA construct targeting the SgE93 transcript inhibited the process of metamorphosis and instead led to supernumerary nymphal stages. These supernumerary nymphal instars still displayed juvenile morphological features, such as a nymphal color scheme and body shape, while they reached the physical body size of the adult locusts, or even surpassed it after the next supernumerary molt. Interestingly, when compared to control locusts, the total duration of the fifth and normally final nymphal (N5) stage was shorter than normal. This appeared to correspond with temporal and quantitative changes in hemolymph ecdysteroid levels, as well as with altered expression of the rate-limiting Halloween gene, Spook (SgSpo). In addition, the levels of the ecdysone receptor (SgEcR) and retinoïd X receptor (SgRXR) transcripts were altered, indicating that silencing SgE93 affects both ecdysteroid synthesis and signaling. Upon knockdown of SgE93, a very potent upregulation of the SgKr-h1 transcript levels was observed in both head and fat body, while no significant changes were detected in the transcript levels of SgJHAMT and SgCYP15A1, the enzymes that catalyze the two final steps in JH biosynthesis. Moreover, the process of molting was disturbed in these supernumerary nymphs. While attempting ecdysis to the next stage, 50% of the N6 and all N7 nymphal instars eventually died. S. gregaria is a very harmful, swarm-forming pest species that destroys crops and threatens food security in many of the world's poorest countries. We believe that a better knowledge of the mechanisms of postembryonic development may contribute to the discovery of novel, more selective and sustainable strategies for controlling gregarious locust populations. In this context, identification of molecular target candidates that are capable of significantly reducing the fitness of this devastating swarming pest will be of crucial importance.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Gafanhotos/embriologia , Gafanhotos/genética , Morfogênese/genética , Ninfa/genética , Interferência de RNA , Fatores de Transcrição/genética , Animais , Ecdisteroides/genética , Ecdisteroides/metabolismo , Genes Reporter , Gafanhotos/classificação , Hemolinfa/metabolismo , Muda , Filogenia , Transdução de Sinais
9.
Eur J Clin Invest ; 50(12): e13411, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32954520

RESUMO

INTRODUCTION: Asymptomatic carotid artery stenosis (ACAS) may cause future stroke and therefore patients with ACAS require best medical treatment. Patients at high risk for stroke may opt for additional revascularization (either surgery or stenting) but the future stroke risk should outweigh the risk for peri/post-operative stroke/death. Current risk stratification for patients with ACAS is largely based on outdated randomized-controlled trials that lack the integration of improved medical therapies and risk factor control. Furthermore, recent circulating and imaging biomarkers for stroke have never been included in a risk stratification model. The TAXINOMISIS Project aims to develop a new risk stratification model for cerebrovascular complications in patients with ACAS and this will be tested through a prospective observational multicentre clinical trial performed in six major European vascular surgery centres. METHODS AND ANALYSIS: The risk stratification model will compromise clinical, circulating, plaque and imaging biomarkers. The prospective multicentre observational study will include 300 patients with 50%-99% ACAS. The primary endpoint is the three-year incidence of cerebrovascular complications. Biomarkers will be retrieved from plasma samples, brain MRI, carotid MRA and duplex ultrasound. The TAXINOMISIS Project will serve as a platform for the development of new computer tools that assess plaque progression based on radiology images and a lab-on-chip with genetic variants that could predict medication response in individual patients. CONCLUSION: Results from the TAXINOMISIS study could potentially improve future risk stratification in patients with ACAS to assist personalized evidence-based treatment decision-making.


Assuntos
Anticoagulantes/uso terapêutico , Doenças Assintomáticas , Estenose das Carótidas/terapia , Endarterectomia das Carótidas , Hipolipemiantes/uso terapêutico , Inibidores da Agregação Plaquetária/uso terapêutico , Acidente Vascular Cerebral/prevenção & controle , Idoso , Biomarcadores/sangue , Estenose das Carótidas/sangue , Estenose das Carótidas/complicações , Regras de Decisão Clínica , Progressão da Doença , Procedimentos Endovasculares , Feminino , Humanos , Dispositivos Lab-On-A-Chip , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Testes Farmacogenômicos , Estudos Prospectivos , Medição de Risco , Stents , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/etiologia
10.
Int J Mol Sci ; 21(17)2020 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-32842716

RESUMO

Krüppel-homolog 1 (Kr-h1) is a zinc finger transcription factor maintaining the status quo in immature insect stages and promoting reproduction in adult insects through the transduction of the Juvenile Hormone (JH) signal. Knockdown studies have shown that precocious silencing of Kr-h1 in the immature stages results in the premature development of adult features. However, the molecular characteristics and reproductive potential of these premature adult insect stages are still poorly understood. Here we report on an adult-like or 'adultoid' phenotype of the migratory locust, Locusta migratoria, obtained after a premature metamorphosis induced by the silencing of LmKr-h1 in the penultimate instar. The freshly molted adultoid shows precocious development of adult features, corresponding with increased transcript levels of the adult specifier gene LmE93. Furthermore, accelerated ovarian maturation and vitellogenesis were observed in female adultoids, coinciding with elevated expression of LmCYP15A1 in corpora allata (CA) and LmKr-h1 and vitellogenin genes (LmVg) in fat body, whereas LmE93 and Methoprene-tolerant (LmMet) transcript levels decreased in fat body. In adultoid ovaries, expression of the Halloween genes, Spook (LmSpo) and Phantom (LmPhm), was elevated as well. In addition, the processes of mating and oviposition were severely disturbed in these females. L. migratoria is a well-known, swarm-forming pest insect that can destroy crops and harvests in some of the world's poorest countries. As such, a better understanding of factors that are capable of significantly reducing the reproductive potential of this pest may be of crucial importance for the development of novel locust control strategies.


Assuntos
Proteínas de Insetos/genética , Fatores de Transcrição Kruppel-Like/genética , Locusta migratoria/fisiologia , Ovário/fisiologia , Oviposição/fisiologia , Animais , Animais Geneticamente Modificados , Feminino , Fertilidade , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/genética , Hormônios Juvenis/genética , Hormônios Juvenis/metabolismo , Masculino , Metamorfose Biológica , Ovário/crescimento & desenvolvimento , Interferência de RNA , Receptores de Esteroides/genética , Comportamento Sexual Animal , Vitelogênese/genética
11.
Insect Biochem Mol Biol ; 125: 103362, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32730893

RESUMO

Neuropeptides belonging to the adipokinetic hormone (AKH) family elicit metabolic effects as their main function in insects, by mobilizing trehalose, diacylgycerol, or proline, which are released from the fat body into the hemolymph as energy sources for muscle contraction required for energy-intensive processes, such as locomotion. One of the AKHs produced in locusts is a decapeptide, Locmi-AKH-I (pELNFTPNWGT-NH2). A head-to-tail cyclic, octapeptide analog of Locmi-AKH-I, cycloAKH (cyclo[LNFTPNWG]) was synthesized to severely restrict the conformational freedom of the AKH structure. In vitro, cycloAKH selectively retains full efficacy on a pest insect (desert locust) AKH receptor, while showing little or no activation of the AKH receptor of a beneficial insect (honeybee). Molecular dynamic analysis incorporating NMR data indicate that cycloAKH preferentially adopts a type II ß-turn under micelle conditions, whereas its linear counterpart and natural AKH adopts a type VI ß-turn under similar conditions. CycloAKH, linear LNFTPNWG-NH2, and Locmi-AKH-I feature the same binding site during docking simulations with the desert locust AKH receptor (Schgr-AKHR), but differ in the details of the ligand/receptor interactions. However, cycloAKH failed to enter the binding pocket of the honeybee receptor 3D model during docking simulations. Since the locust AKH receptor has a greater tolerance than the honeybee receptor for the cyclic conformational constraint in vitro receptor assays, it could suggest a greater tolerance for a shift in the direction of the type II ß turn exhibited by cycloAKH from the type VI ß turn of the linear octapeptide and the native locust decapeptide AKH. Selectivity in biostable mimetic analogs could potentially be enhanced by incorporating conformational constraints that emphasize this shift. Biostable mimetic analogs of AKH offer the potential of selectively disrupting AKH-regulated processes, leading to novel, environmentally benign control strategies for pest insect populations.


Assuntos
Abelhas , Gafanhotos , Hormônios de Inseto/agonistas , Oligopeptídeos/agonistas , Ácido Pirrolidonocarboxílico/análogos & derivados , Receptores de Neuropeptídeos/química , Animais , Abelhas/metabolismo , Sítios de Ligação , Gafanhotos/metabolismo , Controle de Insetos , Hormônios de Inseto/síntese química , Hormônios de Inseto/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Imageamento por Ressonância Magnética/métodos , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Neuropeptídeos/agonistas , Neuropeptídeos/síntese química , Neuropeptídeos/metabolismo , Oligopeptídeos/síntese química , Oligopeptídeos/metabolismo , Ácido Pirrolidonocarboxílico/agonistas , Ácido Pirrolidonocarboxílico/síntese química , Ácido Pirrolidonocarboxílico/metabolismo , Receptores de Neuropeptídeos/metabolismo
12.
Insect Biochem Mol Biol ; 122: 103392, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32387240

RESUMO

G protein-coupled receptors (GPCRs) are membrane-bound receptors that are considered prime candidates for the development of novel insect pest management strategies. However, the molecular signaling properties of insect GPCRs remain poorly understood. In fact, most studies on insect GPCR signaling are limited to analysis of fluctuations in the secondary messenger molecules calcium (Ca2+) and/or cyclic adenosine monophosphate (cAMP). In the current study, we characterized a corticotropin-releasing factor-related diuretic hormone (CRF-DH) receptor of the desert locust, Schistocerca gregaria. This Schgr-CRF-DHR is mainly expressed in the nervous system and in brain-associated endocrine organs. The neuropeptide Schgr-CRF-DH induced Ca2+-dependent aequorin-based bioluminescent responses in CHO cells co-expressing this receptor with the promiscuous Gα16 protein. Furthermore, when co-expressed with the cAMP-dependent bioluminescence resonance energy transfer (BRET)-based CAMYEL biosensor in HEK293T cells, this receptor elicited dose-dependent agonist-induced responses with an EC50 in the nanomolar range (4.02 nM). In addition, we tested if vertebrate BRET-based G protein biosensors, can also be used to detect direct Gα protein subunit activation by an insect GPCR. Therefore, we analyzed ten different human BRET-based G protein biosensors, representing members of all four Gα protein subfamilies; Gαs, Gαi/o, Gαq/11 and Gα12/13. Our data demonstrate that stimulation of Schgr-CRF-DHR by Schgr-CRF-DH can dose-dependently activate Gαi/o and Gαs biosensors, while no significant effects were observed with the Gαq/11 and Gα12/13 biosensors. Our study paves the way for future biosensor-based studies to analyze the signaling properties of insect GPCRs in both fundamental science and applied research contexts.


Assuntos
Técnicas Biossensoriais/instrumentação , Proteínas de Ligação ao GTP/genética , Proteínas de Insetos/genética , Mariposas/fisiologia , Receptores Acoplados a Proteínas G/genética , Sequência de Aminoácidos , Animais , Proteínas de Ligação ao GTP/metabolismo , Hormônios de Inseto/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Medições Luminescentes , Mariposas/genética , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Alinhamento de Sequência , Transdução de Sinais
13.
Sci Rep ; 9(1): 10797, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31346226

RESUMO

Juvenile hormones (JH) are key endocrine regulators produced by the corpora allata (CA) of insects. Together with ecdysteroids, as well as nutritional cues, JH coordinates different aspects of insect postembryonic development and reproduction. The function of the recently characterized JH receptor, Methoprene-tolerant (Met), appears to be conserved in different processes regulated by JH. However, its functional interactions with other hormonal signalling pathways seem highly dependent on the feeding habits and on the developmental and reproductive strategies employed by the insect species investigated. Here we report on the effects of RNA interference (RNAi) mediated SgMet knockdown during the first gonadotrophic cycle in female desert locusts (Schistocerca gregaria). This voracious, phytophagous pest species can form migrating swarms that devastate field crops and harvests in several of the world's poorest countries. A better knowledge of the JH signalling pathway may contribute to the development of novel, more target-specific insecticides to combat this very harmful swarming pest. Using RNAi, we show that the JH receptor Met is essential for ovarian maturation, vitellogenesis and associated ecdysteroid biosynthesis in adult female S. gregaria. Interestingly, knockdown of SgMet also resulted in a significant decrease of insulin-related peptide (SgIRP) and increase of neuroparsin (SgNP) 3 and 4 transcript levels in the fat body, illustrating the existence of an intricate regulatory interplay between different hormonal factors. In addition, SgMet knockdown in females resulted in delayed display of copulation behaviour with virgin males, when compared with dsGFP injected control animals. Moreover, we observed an incapacity of adult dsSgMet injected female locusts to oviposit during the time of the experimental setup. As such, SgMet is an essential gene playing crucial roles in the endocrine communication necessary for successful reproduction of the desert locust.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Gafanhotos/genética , Proteínas de Insetos/metabolismo , Metoprene/metabolismo , Ovário/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Comportamento Alimentar , Feminino , Gafanhotos/metabolismo , Gafanhotos/fisiologia , Proteínas de Insetos/genética , Masculino , Ovário/crescimento & desenvolvimento , Reprodução
15.
Sci Rep ; 9(1): 15, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30626886

RESUMO

Ecdysteroid hormones influence the development and reproduction of arthropods by binding a heterodimeric complex of nuclear receptors, the ecdysone receptor (EcR) and the retinoid-X-receptor/ultraspiracle (RXR/USP). Here, we report on the in vivo role(s) of the ecdysone receptor complex, SchgrEcR/SchgrRXR, in the female reproductive physiology of a major phytophagous pest insect, i.e. the desert locust, Schistocerca gregaria. Tissue and temporal distribution profiles were analysed during the first gonadotrophic cycle of adult female locusts. RNA interference was used as a reverse genetics tool to investigate the in vivo role of the ecdysone receptor complex in ovarian maturation, oogenesis, fertility and fecundity. We discovered that silencing the ecdysone receptor complex in S. gregaria resulted in impaired ovulation and oviposition, indicative for a crucial role of this complex in chorion formation. We also found evidence for a feedback of SchgrEcR/SchgrRXR on juvenile hormone biosynthesis by the corpora allata. Furthermore, we observed a tissue-dependent effect of the SchgrEcR/SchgrRXR knockdown on the transcript levels of the insulin receptor and neuroparsin 3 and 4. The insulin receptor transcript levels were upregulated in the brain, but not the fat body and gonads. Neuroparsins 3 and 4 transcript levels were down regulated in the brain and fat body, but not in the gonads.


Assuntos
Gafanhotos/fisiologia , Hormônios de Inseto/fisiologia , Proteínas de Insetos/fisiologia , Receptores de Esteroides/fisiologia , Receptores X de Retinoides/fisiologia , Animais , Feminino , Reprodução
16.
Int J Mol Sci ; 19(2)2018 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-29439466

RESUMO

Adipokinetic hormone (AKH) is a highly researched insect neuropeptide that induces the mobilization of carbohydrates and lipids from the fat body at times of high physical activity, such as flight and locomotion. As a naturally occurring ligand, AKH has undergone quite a number of amino acid changes throughout evolution, and in some insect species multiple AKHs are present. AKH acts by binding to a rhodopsin-like G protein-coupled receptor, which is related to the vertebrate gonadotropin-releasing hormone receptors. In the current study, we have cloned AKH receptors (AKHRs) from seven different species, covering a wide phylogenetic range of insect orders: the fruit fly, Drosophila melanogaster, and the yellow fever mosquito, Aedes aegypti (Diptera); the red flour beetle, Tribolium castaneum, and the large pine weevil, Hylobius abietis (Coleoptera); the honeybee, Apis mellifera (Hymenoptera); the pea aphid, Acyrthosiphon pisum (Hemiptera); and the desert locust, Schistocerca gregaria (Orthoptera). The agonistic activity of different insect AKHs, including the respective endogenous AKHs, at these receptors was tested with a bioluminescence-based assay in Chinese hamster ovary cells. All receptors were activated by their endogenous ligand in the nanomolar range. Based on our data, we can refute the previously formulated hypothesis that a functional AKH signaling system is absent in the beneficial species, Apis mellifera. Furthermore, our data also suggest that some of the investigated AKH receptors, such as the mosquito AKHR, are more selective for the endogenous (conspecific) ligand, while others, such as the locust AKHR, are more promiscuous and can be activated by AKHs from many other insects. This information will be of high importance when further analyzing the potential use of AKHRs as targets for developing novel pest control agents.


Assuntos
Hormônios de Inseto/metabolismo , Proteínas de Insetos/metabolismo , Insetos/metabolismo , Oligopeptídeos/metabolismo , Ácido Pirrolidonocarboxílico/análogos & derivados , Receptores de Peptídeos/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Evolução Molecular , Hormônios de Inseto/química , Hormônios de Inseto/genética , Insetos/genética , Oligopeptídeos/química , Oligopeptídeos/genética , Ligação Proteica , Ácido Pirrolidonocarboxílico/química , Ácido Pirrolidonocarboxílico/metabolismo , Especificidade por Substrato
17.
Sci Rep ; 7(1): 11730, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28916758

RESUMO

Venus kinase receptors (VKR) are a subfamily of invertebrate receptor tyrosine kinases, which have only recently been discovered. They contain an intracellular tyrosine kinase domain and an extracellular Venus FlyTrap domain. VKRs have been functionally and pharmacologically characterized in only two invertebrate species, namely the human parasite Schistosoma mansoni and the mosquito Aedes aegypti, where they play a crucial role in oogenesis. Here, we report the characterization of a VKR in the desert locust, Schistocerca gregaria. We performed an in-depth profiling study of the SgVKR transcript levels in different tissues throughout the female adult stage. Using the RNA interference technique, the possible role of SgVKR was investigated. SgVKR knockdown had significant effects on ovarian ecdysteroid levels and on the size of oocytes during the vitellogenic stage. SgVKR is probably involved in the complex cross-talk between several important pathways regulating female reproductive physiology. Contrary to A. aegypti and S. mansoni, we cannot conclude that this receptor is essential for reproduction, since silencing SgVKR did not affect fecundity or fertility. Considering the evolutionary distance between A. aegypti and S. gregaria, as well as the differences in regulation of their female reproductive physiology, this article constitutes a valuable asset in better understanding VKRs.


Assuntos
Gafanhotos/fisiologia , Receptores Proteína Tirosina Quinases/fisiologia , Reprodução/fisiologia , Aedes/enzimologia , Animais , Feminino , Proteínas de Insetos/fisiologia , Invertebrados/enzimologia , Invertebrados/fisiologia , Interferência de RNA , Receptores Proteína Tirosina Quinases/genética , Schistosoma mansoni/enzimologia
18.
Sci Rep ; 7: 46502, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28417966

RESUMO

Insects are enclosed in a rigid exoskeleton, providing protection from desiccation and mechanical injury. To allow growth, this armour needs to be replaced regularly in a process called moulting. Moulting entails the production of a new exoskeleton and shedding of the old one and is induced by a pulse in ecdysteroids, which activates a peptide-mediated signalling cascade. In Holometabola, ecdysis triggering hormone (ETH) is the key factor in this cascade. Very little functional information is available in Hemimetabola, which display a different kind of development characterized by gradual changes. This paper reports on the identification of the ETH precursor and the pharmacological and functional characterisation of the ETH receptor in a hemimetabolous pest species, the desert locust, Schistocerca gregaria. Activation of SchgrETHR by SchgrETH results in an increase of both Ca2+ and cyclic AMP, suggesting that SchgrETHR displays dual coupling properties in an in vitro cell-based assay. Using qRT-PCR, an in-depth profiling study of SchgrETH and SchgrETHR transcripts was performed. Silencing of SchgrETH and SchgrETHR resulted in lethality at the expected time of ecdysis, thereby showing their crucial role in moulting.


Assuntos
Ecdisteroides/metabolismo , Hormônios de Inseto/metabolismo , Muda/fisiologia , Neópteros/fisiologia , Animais
19.
Insect Biochem Mol Biol ; 75: 10-23, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27180725

RESUMO

The arthropod-specific hormone family of ecdysteroids plays an important role in regulating diverse physiological processes, such as moulting and metamorphosis, reproduction, diapause and innate immunity. Ecdysteroids mediate their response by binding to a heterodimeric complex of two nuclear receptors, the ecdysone receptor (EcR) and the retinoid-X-receptor/ultraspiracle (RXR/USP). In this study we investigated the role of EcR and RXR in metamorphosis and development of the desert locust, Schistocerca gregaria. The desert locust is a voracious, phytophagous, swarming pest that can ruin crops and harvests in some of the world's poorest countries. A profound knowledge of the ecdysteroid signalling pathway can be used in the development of more target-specific insecticides to combat this harmful plague insect. Here we report an in-depth profiling study of the transcript levels of EcR and RXR, as well as its downstream response genes, in different tissues isolated throughout the last larval stage of a hemimetabolous insect, showing a clear correlation with circulating ecdysteroid titres. Using RNA interference (RNAi), the role of SgEcR/SgRXR in moulting and development was investigated. We have proven the importance of the receptor components for successful moulting of locust nymphs into the adult stage. Some SgEcR/SgRXR knockdown females were arrested in the last larval stage, and 65 % of them initiated vitellogenesis and oocyte maturation, which normally only occurs in adults. Furthermore, our results clearly indicate that at the peak of ecdysteroid synthesis, on day six of the last larval stage, knockdown of SgEcR/SgRXR is affecting the transcript levels of the Halloween genes, Spook, Shadow and Shade.


Assuntos
Gafanhotos/crescimento & desenvolvimento , Gafanhotos/genética , Proteínas de Insetos/genética , Metamorfose Biológica , Receptores de Esteroides/genética , Receptores X de Retinoides/genética , Animais , Ecdisteroides/genética , Ecdisteroides/metabolismo , Feminino , Gafanhotos/metabolismo , Proteínas de Insetos/metabolismo , Masculino , Ninfa/genética , Ninfa/crescimento & desenvolvimento , Ninfa/metabolismo , Interferência de RNA , Receptores de Esteroides/metabolismo , Receptores X de Retinoides/metabolismo
20.
J Insect Physiol ; 80: 2-14, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25982521

RESUMO

Juvenile hormones (JH) are highly pleiotropic insect hormones essential for post-embryonic development. The circulating JH titer in the hemolymph of insects is influenced by enzymatic degradation, binding to JH carrier proteins, uptake and storage in target organs, but evidently also by rates of production at its site of synthesis, the corpora allata (CA). The multiple processes in which JH is involved alongside the critical significance of JH in insect development emphasize the importance for elucidating the control of JH production. Production of JH in CA cells is regulated by different factors: by neurotransmitters, such as dopamine and glutamate, but also by allatoregulatory neuropeptides originating from the brain and axonally transported to the CA where they bind to their G protein-coupled receptors (GPCRs). Different classes of allatoregulatory peptides exist which have other functions aside from acting as influencers of JH production. These pleiotropic neuropeptides regulate different processes in different insect orders. In this mini-review, we will give an overview of allatotropins and allatostatins, and their recently characterized GPCRs with a view to better understand their modes of action and different action sites.


Assuntos
Corpora Allata/metabolismo , Proteínas de Insetos/metabolismo , Insetos/metabolismo , Neuropeptídeos/metabolismo , Receptores de Neuropeptídeos/metabolismo , Animais , Hormônios de Inseto/metabolismo , Proteínas de Insetos/genética , Insetos/genética , Receptores de Neuropeptídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA