Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 40(Supplement_1): i237-i246, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940169

RESUMO

MOTIVATION: Noncoding RNAs (ncRNAs) express their functions by adopting molecular structures. Specifically, RNA secondary structures serve as a relatively stable intermediate step before tertiary structures, offering a reliable signature of molecular function. Consequently, within an RNA functional family, secondary structures are generally more evolutionarily conserved than sequences. Conversely, homologous RNA families grouped within an RNA clan share ancestors but typically exhibit structural differences. Inferring the evolution of RNA structures within RNA families and clans is crucial for gaining insights into functional adaptations over time and providing clues about the Ancient RNA World Hypothesis. RESULTS: We introduce the median problem and the small parsimony problem for ncRNA families, where secondary structures are represented as leaf-labeled trees. We utilize the Robinson-Foulds (RF) tree distance, which corresponds to a specific edit distance between RNA trees, and a new metric called the Internal-Leafset (IL) distance. While the RF tree distance compares sets of leaves descending from internal nodes of two RNA trees, the IL distance compares the collection of leaf-children of internal nodes. The latter is better at capturing differences in structural elements of RNAs than the RF distance, which is more focused on base pairs. We also consider a more general tree edit distance that allows the mapping of base pairs that are not perfectly aligned. We study the theoretical complexity of the median problem and the small parsimony problem under the three distance metrics and various biologically relevant constraints, and we present polynomial-time maximum parsimony algorithms for solving some versions of the problems. Our algorithms are applied to ncRNA families from the RFAM database, illustrating their practical utility. AVAILABILITY AND IMPLEMENTATION: https://github.com/bmarchand/rna\_small\_parsimony.


Assuntos
Conformação de Ácido Nucleico , RNA não Traduzido , RNA não Traduzido/genética , RNA não Traduzido/química , Algoritmos , Evolução Molecular , Análise de Sequência de RNA/métodos , Biologia Computacional/métodos
2.
Algorithms Mol Biol ; 19(1): 13, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493130

RESUMO

MOTIVATION: Many bioinformatics problems can be approached as optimization or controlled sampling tasks, and solved exactly and efficiently using Dynamic Programming (DP). However, such exact methods are typically tailored towards specific settings, complex to develop, and hard to implement and adapt to problem variations. METHODS: We introduce the Infrared framework to overcome such hindrances for a large class of problems. Its underlying paradigm is tailored toward problems that can be declaratively formalized as sparse feature networks, a generalization of constraint networks. Classic Boolean constraints specify a search space, consisting of putative solutions whose evaluation is performed through a combination of features. Problems are then solved using generic cluster tree elimination algorithms over a tree decomposition of the feature network. Their overall complexities are linear on the number of variables, and only exponential in the treewidth of the feature network. For sparse feature networks, associated with low to moderate treewidths, these algorithms allow to find optimal solutions, or generate controlled samples, with practical empirical efficiency. RESULTS: Implementing these methods, the Infrared software allows Python programmers to rapidly develop exact optimization and sampling applications based on a tree decomposition-based efficient processing. Instead of directly coding specialized algorithms, problems are declaratively modeled as sets of variables over finite domains, whose dependencies are captured by constraints and functions. Such models are then automatically solved by generic DP algorithms. To illustrate the applicability of Infrared in bioinformatics and guide new users, we model and discuss variants of bioinformatics applications. We provide reimplementations and extensions of methods for RNA design, RNA sequence-structure alignment, parsimony-driven inference of ancestral traits in phylogenetic trees/networks, and design of coding sequences. Moreover, we demonstrate multidimensional Boltzmann sampling. These applications of the framework-together with our novel results-underline the practical relevance of Infrared. Remarkably, the achieved complexities are typically equivalent to the ones of specialized algorithms and implementations. AVAILABILITY: Infrared is available at https://amibio.gitlabpages.inria.fr/Infrared with extensive documentation, including various usage examples and API reference; it can be installed using Conda or from source.

3.
Algorithms Mol Biol ; 18(1): 18, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38041153

RESUMO

Although RNA secondary structure prediction is a textbook application of dynamic programming (DP) and routine task in RNA structure analysis, it remains challenging whenever pseudoknots come into play. Since the prediction of pseudoknotted structures by minimizing (realistically modelled) energy is NP-hard, specialized algorithms have been proposed for restricted conformation classes that capture the most frequently observed configurations. To achieve good performance, these methods rely on specific and carefully hand-crafted DP schemes. In contrast, we generalize and fully automatize the design of DP pseudoknot prediction algorithms. For this purpose, we formalize the problem of designing DP algorithms for an (infinite) class of conformations, modeled by (a finite number of) fatgraphs, and automatically build DP schemes minimizing their algorithmic complexity. We propose an algorithm for the problem, based on the tree-decomposition of a well-chosen representative structure, which we simplify and reinterpret as a DP scheme. The algorithm is fixed-parameter tractable for the treewidth tw of the fatgraph, and its output represents a [Formula: see text] algorithm (and even possibly [Formula: see text] in simple energy models) for predicting the MFE folding of an RNA of length n. We demonstrate, for the most common pseudoknot classes, that our automatically generated algorithms achieve the same complexities as reported in the literature for hand-crafted schemes. Our framework supports general energy models, partition function computations, recursive substructures and partial folding, and could pave the way for algebraic dynamic programming beyond the context-free case.

4.
Algorithms Mol Biol ; 17(1): 8, 2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35366923

RESUMO

Hard graph problems are ubiquitous in Bioinformatics, inspiring the design of specialized Fixed-Parameter Tractable algorithms, many of which rely on a combination of tree-decomposition and dynamic programming. The time/space complexities of such approaches hinge critically on low values for the treewidth tw of the input graph. In order to extend their scope of applicability, we introduce the TREE-DIET problem, i.e. the removal of a minimal set of edges such that a given tree-decomposition can be slimmed down to a prescribed treewidth [Formula: see text]. Our rationale is that the time gained thanks to a smaller treewidth in a parameterized algorithm compensates the extra post-processing needed to take deleted edges into account. Our core result is an FPT dynamic programming algorithm for TREE-DIET, using [Formula: see text] time and space. We complement this result with parameterized complexity lower-bounds for stronger variants (e.g., NP-hardness when [Formula: see text] or [Formula: see text] is constant). We propose a prototype implementation for our approach which we apply on difficult instances of selected RNA-based problems: RNA design, sequence-structure alignment, and search of pseudoknotted RNAs in genomes, revealing very encouraging results. This work paves the way for a wider adoption of tree-decomposition-based algorithms in Bioinformatics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA