Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1309766, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38370479

RESUMO

The number of patients affected by neurodegenerative diseases is increasing worldwide, and no effective treatments have been developed yet. Although precision medicine could represent a powerful tool, it remains a challenge due to the high variability among patients. To identify molecules acting with innovative mechanisms of action, we performed a computational investigation using SAFAN technology, focusing specifically on HuD. This target belongs to the human embryonic lethal abnormal visual-like (ELAV) proteins and plays a key role in neuronal plasticity and differentiation. The results highlighted that the molecule able to bind the selected target was (R)-aloesaponol-III-8-methyl ether [(R)-ASME], a metabolite extracted from Eremurus persicus. Notably, this molecule is a TNF-α inhibitor, a cytokine involved in neuroinflammation. To obtain a suitable amount of (R)-ASME to confirm its activity on HuD, we optimized the extraction procedure. Together with ASME, another related metabolite, germichrysone, was isolated. Both ASME and germichrysone underwent biological investigation, but only ASME confirmed its ability to bind HuD. Given the multifactorial nature of neurodegenerative diseases, we decided to investigate ASME as a proteasome activator, being molecules endowed with this kind of activity potentially able to counteract aggregations of dysregulated proteins. ASME was able to activate the considered target both in enzymatic and cellular assays. Therefore, ASME may be considered a promising hit in the fight against neurodegenerative diseases.

2.
Nat Prod Res ; 38(5): 861-866, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36964661

RESUMO

A major issue in Alzheimer's disease (AD) research is to find some new therapeutic drug which decrease Amyloid-beta (Aß) aggregation. From a therapeutic point of view the major question is whether pharmacological inhibition of inflammation pathways will be able to safely reverse or slow the course of disease. Natural compounds are capable of binding to different targets implicated in AD and exert neuroprotective effects. Aim of this study was to evaluate the in vitro inhibition of Aß1-42 fibrillogenesis in presence of Gallic acid, Rutin, Melatonin and ProvinolsTM . We performed the analysis with Transmission and Scanning Electron Microscopy, and with X-ray microanalysis. Samples treated with Rutin, that arises from phenylalanine via the phenylpropanoid pathway, show the best effective result obtained because a significantly fibril inhibition activity is detectable compared to the other compounds. Melatonin shows a better inhibitory activity than ProvinolsTM and Gallic acid at the considered concentrations.


Assuntos
Doença de Alzheimer , Melatonina , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Melatonina/farmacologia , Melatonina/uso terapêutico , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Rutina/farmacologia , Ácido Gálico/farmacologia , Dieta , Polifenóis , Fragmentos de Peptídeos/química
3.
Curr Neuropharmacol ; 22(1): 53-64, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37550909

RESUMO

A majority of older patients suffer from neuropathic pain (NP) that significantly alters their daily activities and imposes a significant burden on health care. Multiple comorbidities and the risk of polypharmacy in the elderly make it challenging to determine the appropriate drug, dosage, and maintenance of therapy. Age-dependent processes play a contributing role in neuropathy given that diabetic neuropathy (DN) is the most common form of neuropathy. This narrative review is mainly focused on the drug treatment approach for neuropathy-associated pain in aged people including both drugs and dietary supplements, considering the latter as add-on mechanism-based treatments to increase the effectiveness of usual treatments by implementing their activity or activating other analgesic pathways. On one hand, the limited clinical studies assessing the effectiveness and the adverse effects of existing pain management options in this age segment of the population (> 65), on the other hand, the expanding global demographics of the elderly contribute to building up an unresolved pain management problem that needs the attention of healthcare providers, researchers, and health authorities as well as the expansion of the current therapeutic options.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Neuralgia , Idoso , Humanos , Neuropatias Diabéticas/complicações , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/induzido quimicamente , Neuralgia/tratamento farmacológico , Analgésicos/uso terapêutico , Analgésicos/efeitos adversos , Manejo da Dor , Suplementos Nutricionais , Diabetes Mellitus/induzido quimicamente , Diabetes Mellitus/tratamento farmacológico
4.
Int J Mol Sci ; 24(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37686143

RESUMO

The human microbiota refers to a large variety of microorganisms (bacteria, viruses, and fungi) that live in different human body sites, including the gut, oral cavity, skin, and eyes. In particular, the presence of an ocular surface microbiota with a crucial role in maintaining ocular surface homeostasis by preventing colonization from pathogen species has been recently demonstrated. Moreover, recent studies underline a potential association between gut microbiota (GM) and ocular health. In this respect, some evidence supports the existence of a gut-eye axis involved in the pathogenesis of several ocular diseases, including age-related macular degeneration, uveitis, diabetic retinopathy, dry eye, and glaucoma. Therefore, understanding the link between the GM and these ocular disorders might be useful for the development of new therapeutic approaches, such as probiotics, prebiotics, symbiotics, or faecal microbiota transplantation through which the GM could be modulated, thus allowing better management of these diseases.


Assuntos
Retinopatia Diabética , Glaucoma , Degeneração Macular , Humanos , Olho , Face
5.
Int J Mol Sci ; 24(15)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37569576

RESUMO

The RNA-binding protein HuD has been shown to play a crucial role in gene regulation in the nervous system and is involved in various neurological and psychiatric diseases. In this study, through the creation of an interaction network on HuD and its potential targets, we identified a strong association between HuD and several diseases of the nervous system. Specifically, we focused on the relationship between HuD and the brain-derived neurotrophic factor (BDNF), whose protein is implicated in several neuronal diseases and is involved in the regulation of neuronal development, survival, and function. To better investigate this relationship and given that we previously demonstrated that folic acid (FA) is able to directly bind HuD itself, we performed in vitro experiments in neuron-like human SH-SY5Y cells in the presence of FA, also known to be a pivotal environmental factor influencing the nervous system development. Our findings show that FA exposure results in a significant increase in both HuD and BDNF transcripts and proteins after 2 and 4 h of treatment, respectively. Similar data were obtained after 2 h of FA incubation followed by 2 h of washout. This increase was no longer detected upon 24 h of FA exposure, probably due to a signaling shutdown mechanism. Indeed, we observed that following 24 h of FA exposure HuD is methylated. These findings indicate that FA regulates BDNF expression via HuD and suggest that FA can behave as an epigenetic modulator of HuD in the nervous system acting via short- and long-term mechanisms. Finally, the present results also highlight the potential of BDNF as a therapeutic target for specific neurological and psychiatric diseases.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Neuroblastoma , Humanos , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas ELAV/genética , Proteínas ELAV/metabolismo , Proteína Semelhante a ELAV 4/genética , Neuroblastoma/metabolismo , Neurônios/metabolismo
6.
Int J Mol Sci ; 24(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37298395

RESUMO

Ischemic stroke is the most common cause of adult disability and one of the leading causes of death worldwide, with a serious socio-economic impact. In the present work, we used a new thromboembolic model, recently developed in our lab, to induce focal cerebral ischemic (FCI) stroke in rats without reperfusion. We analyzed selected proteins implicated in the inflammatory response (such as the RNA-binding protein HuR, TNFα, and HSP70) via immunohistochemistry and western blotting techniques. The main goal of the study was to evaluate the beneficial effects of a single administration of minocycline at a low dose (1 mg/kg intravenously administered 10 min after FCI) on the neurons localized in the penumbra area after an ischemic stroke. Furthermore, given the importance of understanding the crosstalk between molecular parameters and motor functions following FCI, motor tests were also performed, such as the Horizontal Runway Elevated test, CatWalk™ XT, and Grip Strength test. Our results indicate that a single administration of a low dose of minocycline increased the viability of neurons and reduced the neurodegeneration caused by ischemia, resulting in a significant reduction in the infarct volume. At the molecular level, minocycline resulted in a reduction in TNFα content coupled with an increase in the levels of both HSP70 and HuR proteins in the penumbra area. Considering that both HSP70 and TNF-α transcripts are targeted by HuR, the obtained results suggest that, following FCI, this RNA-binding protein promotes a protective response by shifting its binding towards HSP70 instead of TNF-α. Most importantly, motor tests showed that reduced inflammation in the brain damaged area after minocycline treatment directly translated into a better motor performance, which is a fundamental outcome when searching for new therapeutic options for clinical practice.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Ratos , Animais , Minociclina/farmacologia , Minociclina/uso terapêutico , AVC Isquêmico/tratamento farmacológico , Fator de Necrose Tumoral alfa/farmacologia , Ratos Sprague-Dawley , Neurônios , Acidente Vascular Cerebral/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , Modelos Animais de Doenças
7.
Int J Mol Sci ; 24(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37372956

RESUMO

The endogenous antioxidant defense plays a big part in the pathogenesis of non-alcoholic fatty liver disease (NAFLD), a common metabolic disorder that can lead to serious complications such as cirrhosis and cancer. HuR, an RNA-binding protein of the ELAV family, controls, among others, the stability of MnSOD and HO-1 mRNA. These two enzymes protect the liver cells from oxidative damage caused by excessive fat accumulation. Our aim was to investigate the expression of HuR and its targets in a methionine-choline deficient (MCD) model of NAFLD. To this aim, we fed male Wistar rats with an MCD diet for 3 and 6 weeks to induce NAFLD; then, we evaluated the expression of HuR, MnSOD, and HO-1. The MCD diet induced fat accumulation, hepatic injury, oxidative stress, and mitochondrial dysfunction. A HuR downregulation was also observed in association with a reduced expression of MnSOD and HO-1. Moreover, the changes in the expression of HuR and its targets were significantly correlated with oxidative stress and mitochondrial injury. Since HuR plays a protective role against oxidative stress, targeting this protein could be a therapeutic strategy to both prevent and counteract NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Ratos , Masculino , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Colina/metabolismo , Metionina/metabolismo , Ratos Wistar , Fígado/metabolismo , Estresse Oxidativo , Racemetionina/metabolismo , Dieta/efeitos adversos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
8.
Ageing Res Rev ; 88: 101958, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37211318

RESUMO

Aging represents the major risk factor for the onset and/or progression of various disorders including neurodegenerative diseases, metabolic disorders, and bone-related defects. As the average age of the population is predicted to exponentially increase in the coming years, understanding the molecular mechanisms underlying the development of aging-related diseases and the discovery of new therapeutic approaches remain pivotal. Well-reported hallmarks of aging are cellular senescence, genome instability, autophagy impairment, mitochondria dysfunction, dysbiosis, telomere attrition, metabolic dysregulation, epigenetic alterations, low-grade chronic inflammation, stem cell exhaustion, altered cell-to-cell communication and impaired proteostasis. With few exceptions, however, many of the molecular players implicated within these processes as well as their role in disease development remain largely unknown. RNA binding proteins (RBPs) are known to regulate gene expression by dictating at post-transcriptional level the fate of nascent transcripts. Their activity ranges from directing primary mRNA maturation and trafficking to modulation of transcript stability and/or translation. Accumulating evidence has shown that RBPs are emerging as key regulators of aging and aging-related diseases, with the potential to become new diagnostic and therapeutic tools to prevent or delay aging processes. In this review, we summarize the role of RBPs in promoting cellular senescence and we highlight their dysregulation in the pathogenesis and progression of the main aging-related diseases, with the aim of encouraging further investigations that will help to better disclose this novel and captivating molecular scenario.


Assuntos
Doenças Metabólicas , Doenças Neurodegenerativas , Humanos , Envelhecimento/metabolismo , Senescência Celular/genética , Doenças Neurodegenerativas/metabolismo , Proteínas de Ligação a RNA/genética
9.
Int J Mol Sci ; 25(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38203377

RESUMO

N-acetylcysteine (NAC), a mucolytic agent and an antidote to acetaminophen intoxication, has been studied in experimental conditions and trials exploring its analgesic activity based on its antioxidant and anti-inflammatory properties. The purpose of this study is to investigate additional mechanisms, namely, the inhibition of nerve growth factor (NGF) and the activation of the Tropomyosin receptor kinase A (TrkA) receptor, which is responsible for nociception. In silico studies were conducted to evaluate dithiothreitol and NAC's interaction with TrkA. We also measured the autophosphorylation of TrkA in SH-SY5Y cells via ELISA to assess NAC's in vitro activity against NGF-induced TrkA activation. The in silico and in vitro tests show that NAC interferes with NGF-induced TrkA activation. In particular, NAC breaks the disulfide-bound Cys 300-345 of TrkA, perturbing the NGF-TrkA interaction and producing a rearrangement of the binding site, inducing a consequent loss of their molecular recognition and spatial reorganization, which are necessary for the induction of the autophosphorylation process. The latter was inhibited by 40% using 20 mM NAC. These findings suggest that NAC could have a role as a TrkA antagonist, an action that may contribute to the activity and use of NAC in various pain states (acute, chronic, nociplastic) sustained by NGF hyperactivity and/or accompanied by spinal cord sensitization.


Assuntos
Acetilcisteína , Neuroblastoma , Humanos , Acetilcisteína/farmacologia , Fator de Crescimento Neural/farmacologia , Analgésicos/farmacologia , Dissulfetos
10.
Brain Sci ; 12(12)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36552131

RESUMO

The animal thromboembolic model of ischemia perfectly mimics human ischemic stroke which remains the leading cause of disability and mortality in humans. The development of new treatment strategies was therefore imperative. The purpose of this study is to improve the thromboembolic stroke model in rats in order to design experiments that use motor tests, and are in accordance with the 3R principles to prevent complications and maintain the same size of the infarct repeatedly. Tail vein dye application, a protective skull mask and a stress minimization protocol were used as additional modifications to the animal stroke model. These modifications significantly minimized the pain and stress severity of the procedures in this model. In our experimental group of Long-Evans rats, a photo-induced stroke was caused by the application of a photosensitive dye (Rose Bengal) activated with white-light irradiation, thus eliminating the need to perform a craniotomy. The animals' neurological status was evaluated using a runway elevated test. Histological examination of the brain tissue was performed at 12, 24 and 48 h, and seven days post-stroke. Tissue examination revealed necrotic foci in the cortex and the subcortical regions of the ipsilateral hemisphere in all experimental groups. Changes in the area, width and depth of the necrotic focus were observed over time. All the experimental groups showed motor disturbances after stroke survival. In the proposed model, photochemically-induced stroke caused long-term motor deficits, showed high reproducibility and low mortality rates. Consequently, the animals could participate in motor tests which are particularly suitable for assessing the efficacy of neuro-regenerative therapies, while remaining in line with the latest trends in animal experimental design.

11.
Mult Scler Relat Disord ; 68: 104197, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36270254

RESUMO

BACKGROUND: Dimethyl fumarate (DMF) is an effective treatment for relapsing remitting Multiple Sclerosis (MS) and its mechanisms of action encompass immunomodulatory and cytoprotective effects. Despite DMF is known to activate the Nrf2 pathway, Nrf2-independent mechanisms have been also reported and new insights on the underlying molecular mechanisms are still emerging including transcriptional and post-transcriptional events. At this regard, we focused on a small family of RNA-binding proteins, the ELAV-like proteins, that play a pivotal role in post-transcriptional mechanisms and are involved in the pathogenesis of several psychiatric and neurologic disorders. HuR, the ubiquitously expressed member of the family, is implicated in many cellular functions, including survival, inflammation and proper functioning of the immune system. We previously documented the potential entanglement of HuR in MS pathogenesis. In the present work, we explored HuR protein levels in peripheral blood mononuclear cells (PBMCs) from MS patients before and after DMF treatment compared to healthy controls (HC). Considering that HuR may act on various targets, playing a protective role against oxidative stress, our main goals were to evaluate whether manganese-dependent superoxide dismutase transcript (SOD2) could represent a new molecular target of HuR and to study the potential influence of DMF treatment on this interaction. METHODS: PBMCs from 20 patients with MS and 20 frequency-matched HC by sex and age were used to evaluate HuR, MnSOD (the protein coded by SOD2) and Nrf2 protein content by Western blot, before and after 12 months of DMF treatment. Immunoprecipitation experiments coupled with RNA extraction in PBMCs were performed to explore whether SOD2 mRNA could be physically bound by HuR and whether the expression of MnSOD protein could be affected by 12 months of DMF treatment. RESULTS: In PBMCs, HuR protein binds SOD2 transcript in HC and in MS patients naïve to disease modifying treatment. The expression of MnSOD protein is positively affected by 12 months of DMF treatment. PBMCs from MS patients have a lower HuR and MnSOD protein content compared to matched HC (HuR: p<0.01, MnSOD: p<0.01). Of interest, 12 months of DMF treatment in MS patients restores the amount of both HuR protein and MnSOD enzyme to the levels observed in HC. We also confirmed that Nrf2 is an HuR target, and we report that its levels are significantly increased in MS patients naïve to disease modifying treatment and remain elevated following DMF administration. CONCLUSION: SOD2 transcript is a new target of HuR protein. DMF induces an increased expression of HuR protein, which ultimately interacts more strongly with SOD2 transcript promoting the expression of this antioxidant protein. The activation of this molecular cascade can constitute an additional tool that the cells can exploit to counteract the oxidative stress associated with MS development, and can account for the multifaceted molecular mechanisms underlying DMF efficacy in MS.


Assuntos
Fumarato de Dimetilo , Esclerose Múltipla Recidivante-Remitente , Humanos , Lactente , Fumarato de Dimetilo/uso terapêutico , Proteína Semelhante a ELAV 1 , Imunossupressores/uso terapêutico , Leucócitos Mononucleares/metabolismo , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico
12.
Cells ; 11(18)2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-36139402

RESUMO

Human aging, a natural process characterized by structural and physiological changes, leads to alterations of homeostatic mechanisms, decline of biological functions, and subsequently, the organism becomes vulnerable to external stress or damage. In fact, the elderly population is prone to develop diseases due to deterioration of physiological and biological systems. With aging, the production of reactive oxygen species (ROS) increases, and this causes lipid, protein, and DNA damage, leading to cellular dysfunction and altered cellular processes. Indeed, oxidative stress plays a key role in the pathogenesis of several chronic disorders, including hepatic diseases, such as non-alcoholic fatty liver disease (NAFLD). NAFLD, the most common liver disorder in the Western world, is characterized by intrahepatic lipid accumulation; is highly prevalent in the aging population; and is closely associated with obesity, insulin resistance, hypertension, and dyslipidemia. Among the risk factors involved in the pathogenesis of NAFLD, the dysbiotic gut microbiota plays an essential role, leading to low-grade chronic inflammation, oxidative stress, and production of various toxic metabolites. The intestinal microbiota is a dynamic ecosystem of microbes involved in the maintenance of physiological homeostasis; the alteration of its composition and function, during aging, is implicated in different liver diseases. Therefore, gut microbiota restoration might be a complementary approach for treating NAFLD. The administration of probiotics, which can relieve oxidative stress and elicit several anti-aging properties, could be a strategy to modify the composition and restore a healthy gut microbiota. Indeed, probiotics could represent a valid supplement to prevent and/or help treating some diseases, such as NAFLD, thus improving the already available pharmacological intervention. Moreover, in aging, intervention of prebiotics and fecal microbiota transplantation, as well as probiotics, will provide novel therapeutic approaches. However, the relevant research is limited, and several scientific research works need to be done in the near future to confirm their efficacy.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Probióticos , Idoso , Ecossistema , Humanos , Lipídeos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Probióticos/uso terapêutico , Espécies Reativas de Oxigênio
13.
Pain Pract ; 22(2): 255-275, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34498362

RESUMO

This review is aimed to summarize the pain-relieving effect of non-drug substances, mostly prescribed as integrators in treatment of pain, including especially in chronic postoperative pain (CPSP) and in chronic back pain after acute episodes. Their use reflects the fact that the current treatments for these syndromes continue to pose problems of unsatisfactory responses in a significant portion of patients and/or of an excess of side effects like those noted in the present opioid crisis. As integrators are frequently introduced into the market without adequate clinical testing, this review is aimed to collect the present scientific evidence either preclinical or clinical for their effectiveness. In particular, we reviewed the data on the use of: B vitamins; vitamin C; vitamin D; alpha lipoic acid (ALA); N-acetylcysteine; acetyl L-carnitine; curcumin; boswellia serrata; magnesium; coenzyme Q10, and palmitoylethanolamide. The combination of preclinical findings and clinical observations strongly indicate that these compounds deserve more careful attention, some of them having interesting clinical potentials also in preventing chronic pain after an acute episode. In particular, examining their putative mechanisms of action it emerges that combinations of few of them may exert an extraordinary spectrum of activities on a large variety of pain-associated pathways and may be eventually used in combination with more traditional pain killers in order to extend the duration of the effect and to lower the doses. Convincing examples of effective combinations against pain are vitamin B complex plus gabapentin for CPSP, including neuropathic pain; vitamin B complex plus diclofenac against low back pain and also in association with gabapentin, and ALA for burning mouth syndrome. These as well as other examples need, however, careful controlled independent clinical studies confirming their role in therapy.


Assuntos
Analgésicos , Neuralgia , Acetaminofen , Analgésicos/uso terapêutico , Gabapentina/uso terapêutico , Humanos , Neuralgia/tratamento farmacológico , Dor Pós-Operatória/tratamento farmacológico
14.
Surv Ophthalmol ; 67(3): 675-696, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34563531

RESUMO

Glaucoma is a major ocular neurodegenerative disease characterized by progressive retinal ganglion cells degeneration and sight loss. Current treatment options have been limited to reducing intraocular pressure (IOP), known as the leading risk factor for this disease; however, glaucoma can develop even with low or normal IOP and progress despite controlling IOP values. Lifestyle, dietary habits, and supplementation may influence some of the risk factors and pathophysiological mechanisms underlying glaucoma development and progression; thus, the role of this complementary and alternative medicine in glaucoma has received great interest from both patients and ophthalmologists. We provide a summary of the current evidence concerning the relationship between lifestyle, dietary habits, and effects of supplements on the incidence and progression of glaucoma and their targets and associated mechanisms. The data suggest the existence of a therapeutic potential that needs to be further explored with both preclinical and rigorous clinical studies.


Assuntos
Glaucoma , Doenças Neurodegenerativas , Dieta , Suplementos Nutricionais , Humanos , Pressão Intraocular , Estilo de Vida
15.
Front Pharmacol ; 12: 707909, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489701

RESUMO

To investigate the role of vascular endothelial growth factor (VEGF) at different phases of diabetic retinopathy (DR), we assessed the retinal protein expression of VEGF-A164 (corresponding to the VEGF165 isoform present in humans, which is the predominant member implicated in vascular hyperpermeability and proliferation), HIF-1α and PKCß/HuR pathway in Ins2 Akita (diabetic) mice at different ages. We used C57BL6J mice (WT) at different ages as control. Retina status, in terms of tissue morphology and neovascularization, was monitored in vivo at different time points by optical coherence tomography (OCT) and fluorescein angiography (FA), respectively. The results showed that VEGF-A164 protein expression increased along time to become significantly elevated (p < 0.05) at 9 and 46 weeks of age compared to WT mice. The HIF-1α protein level was significantly (p < 0.05) increased at 9 weeks of age, while PKCßII and HuR protein levels were increased at 46 weeks of age compared to WT mice. The thickness of retinal nerve fiber layer as measured by OCT was decreased in Ins2 Akita mice at 9 and 46 weeks of age, while no difference in the retinal vasculature were observed by FA. The present findings show that the retina of the diabetic Ins2 Akita mice, as expected for mice, does not develop proliferative retinopathy even after 46 weeks. However, diabetic Ins2 Akita mice recapitulate the same evolution of patients with DR in terms of both retinal neurodegeneration and pro-angiogenic shift, this latter indicated by the progressive protein expression of the pro-angiogenic isoform VEGF-A164, which can be sustained by the PKCßII/HuR pathway acting at post-transcriptional level. In agreement with this last concept, this rise in VEGF-A164 protein is not paralleled by an increment of the corresponding transcript. Nevertheless, the observed increase in HIF-1α at 9 weeks indicates that this transcription factor may favor, in the early phase of the disease, the transcription of other isoforms, possibly neuroprotective, in the attempt to counteract the neurodegenerative effects of VEGF-A164. The time-dependent VEGF-A164 expression in the retina of diabetic Ins2 Akita mice suggests that pharmacological intervention in DR might be chosen, among other reasons, on the basis of the specific stages of the pathology in order to pursue the best clinical outcome.

16.
Cells ; 10(9)2021 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-34572041

RESUMO

The possible interconnection between the eye and central nervous system (CNS) has been a topic of discussion for several years just based on fact that the eye is properly considered an extension of the brain. Both organs consist of neurons and derived from a neural tube. The visual process involves photoreceptors that receive light stimulus from the external environment and send it to retinal ganglionic cells (RGC), one of the cell types of which the retina is composed. The retina, the internal visual membrane of the eye, processes the visual stimuli in electric stimuli to transfer it to the brain, through the optic nerve. Retinal chronic progressive neurodegeneration, which may occur among the elderly, can lead to different disorders of the eye such as glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy (DR). Mainly in the elderly population, but also among younger people, such ocular pathologies are the cause of irreversible blindness or impaired, reduced vision. Typical neurodegenerative diseases of the CSN are a group of pathologies with common characteristics and etiology not fully understood; some risk factors have been identified, but they are not enough to justify all the cases observed. Furthermore, several studies have shown that also ocular disorders present characteristics of neurodegenerative diseases and, on the other hand, CNS pathologies, i.e., Alzheimer disease (AD) and Parkinson disease (PD), which are causes of morbidity and mortality worldwide, show peculiar alterations at the ocular level. The knowledge of possible correlations could help to understand the mechanisms of onset. Moreover, the underlying mechanisms of these heterogeneous disorders are still debated. This review discusses the characteristics of the ocular illnesses, focusing on the relationship between the eye and the brain. A better comprehension could help in future new therapies, thus reducing or avoiding loss of vision and improve quality of life.


Assuntos
Oftalmopatias/patologia , Doenças Neurodegenerativas/patologia , Retina/patologia , Córtex Visual/patologia , Animais , Oftalmopatias/complicações , Humanos , Doenças Neurodegenerativas/complicações
17.
J Med Chem ; 64(14): 9989-10000, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34219450

RESUMO

ELAV-like (ELAVL) RNA-binding proteins play a pivotal role in post-transcriptional processes, and their dysregulation is involved in several pathologies. This work was focused on HuD (ELAVL4), which is specifically expressed in nervous tissues, and involved in differentiation and synaptic plasticity mechanisms. HuD represents a new, albeit unexplored, candidate target for the treatment of several relevant neurodegenerative diseases. The aim of this pioneering work was the identification of new molecules able to recognize and bind HuD, thus interfering with its activity. We combined virtual screening, molecular dynamics (MD), and STD-NMR techniques. Starting from around 51 000 compounds, four promising hits eventually provided experimental evidence of their ability to bind HuD. Among the selected best hits, folic acid was found to be the most interesting one, being able to well recognize the HuD binding site. Our results provide a basis for the identification of new HuD interfering compounds which may be useful against neurodegenerative syndromes.


Assuntos
Proteína Semelhante a ELAV 4/antagonistas & inibidores , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Proteína Semelhante a ELAV 4/metabolismo , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Doenças Neurodegenerativas/metabolismo , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Relação Estrutura-Atividade
18.
PLoS One ; 15(11): e0242627, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33253266

RESUMO

Chronic conditions requiring long-term rehabilitation therapies, such as hypertension, stroke, or cancer, involve complex interactions between various systems/organs of the body and mutual influences, thus implicating a multiorgan approach. The dual-flow IVTech LiveBox2 bioreactor is a recently developed inter-connected dynamic cell culture model able to mimic organ crosstalk, since cells belonging to different organs can be connected and grown under flow conditions in a more physiological environment. This study aims to setup for the first time a 2-way connected culture of human neuroblastoma cells, SH-SY5Y, and Human Coronary Artery Smooth Muscle Cells, HCASMC through a dual-flow IVTech LiveBox2 bioreactor, in order to represent a simplified model of nervous-cardiovascular systems crosstalk, possibly relevant for the above-mentioned diseases. The system was tested by treating the cells with 10nM angiotensin II (AngII) inducing PKCßII/HuR/VEGF pathway activation, since AngII and PKCßII/HuR/VEGF pathway are relevant in cardiovascular and neuroscience research. Three different conditions were applied: 1- HCASMC and SH-SY5Y separately seeded in petri dishes (static condition); 2- the two cell lines separately seeded under flow (dynamic condition); 3- the two lines, seeded in dynamic conditions, connected, each maintaining its own medium, with a membrane as interface for biohumoral changes between the two mediums, and then treated. We detected that only in condition 3 there was a synergic AngII-dependent VEGF production in SH-SY5Y cells coupled to an AngII-dependent PKCßII/HuR/VEGF pathway activation in HCASMC, consistent with the observed physiological response in vivo. HCASMC response to AngII seems therefore to be generated by/derived from the reciprocal cell crosstalk under the dynamic inter-connection ensured by the dual flow LiveBox 2 bioreactor. This system can represent a useful tool for studying the crosstalk between organs, helpful for instance in rehabilitation research or when investigating chronic diseases; further, it offers the advantageous opportunity of cultivating each cell line in its own medium, thus mimicking, at least in part, distinct tissue milieu.


Assuntos
Reatores Biológicos , Comunicação Celular , Modelos Cardiovasculares , Modelos Neurológicos , Miócitos de Músculo Liso/metabolismo , Neurônios/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Humanos , Miócitos de Músculo Liso/citologia , Neurônios/citologia
19.
Pharmacol Res ; 157: 104856, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32389857

RESUMO

There is increasing interest in the role of the gut microbiota in health and disease. In particular, gut microbiota influences the Central Nervous System (CNS) development and homeostasis through neural pathways or routes involving the immune and circulatory systems. The CNS, in turn, shapes the intestinal flora through endocrine or stress-mediated responses. These overall bidirectional interactions, known as gut microbiota-brain axis, profoundly affect some brain functions, such as neurogenesis and the production of neurotransmitters, up to influence behavioral aspects of healthy subjects. Consequently, a dysfunction within this axis, as observed in case of dysbiosis, can have an impact on the behavior of a given individual (e.g. anxiety and depression) or on the development of pathologies affecting the CNS, such as autism spectrum disorders and neurodegenerative diseases (e.g. Alzheimer's disease and Parkinson's disease). It should be considered that the whole microbiota has a significant role not only on aspects concerning human physiology, such as harvesting of nutrients and energy from the ingested food or production of a wide range of bioactive compounds, but also has positive effects on the gastrointestinal barrier function and actively contributes to the pharmacokinetics of several compounds including neuropsychiatric drugs. Indeed, the microbiota is able to affect drug absorption and metabolism up to have an impact on drug activity and/or toxicity. On the other hand, drugs are able to shape the human gut microbiota itself, where these changes may contribute to their pharmacologic profile. Therefore, the emerging picture on the complex drug-microbiota bidirectional interplay will have considerable implications in the future not only in terms of clinical practice but also, upstream, on drug development.


Assuntos
Antipsicóticos/uso terapêutico , Bactérias/metabolismo , Encéfalo/efeitos dos fármacos , Microbioma Gastrointestinal , Intestinos/microbiologia , Transtornos Mentais/tratamento farmacológico , Animais , Antipsicóticos/efeitos adversos , Antipsicóticos/farmacocinética , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Citocinas/metabolismo , Disbiose , Interações Hospedeiro-Patógeno , Humanos , Mediadores da Inflamação/metabolismo , Transtornos Mentais/microbiologia , Transtornos Mentais/fisiopatologia , Transtornos Mentais/psicologia , Saúde Mental
20.
Biochem Pharmacol ; 175: 113908, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32171729

RESUMO

The ELAVL1 (or human antigen R - HuR) RNA binding protein stabilizes the mRNA, with an AU-rich element, of several genes such as growth factors (i.e. VEGF) and inflammatory cytokines (i.e. TNFα). We hereby carried out a virtual screening campaign in order to identify and test novel HuR-mRNA disruptors. Best-scored compounds were tested in an in-vitro model of diabetic retinopathy, namely human retinal endothelial cells (HRECs) challenged with high-glucose levels (25 mM). HuR, VEGF and TNFα protein contents were evaluated by western-blot analysis in total cell lysates. VEGF and TNFα released from HRECs were measured in cell medium by ELISA. We found that two derivatives bearing indole moiety, VP12/14 and VP12/110, modulated HuR expression and decreased VEGF and TNF-α release by HREC exposed to high glucose (HG) levels. VP12/14 and VP12/110 inhibited VEGF and TNF-α release in HRECs challenged with high glucose levels, similarly to dihydrotanshinone (DHTS), a small molecule known to interfere with HuR- TNFα mRNA binding. The present findings demonstrated that VP12/14 and VP12/110 are innovative molecules with anti-inflammatory and anti-angiogenic properties, suggesting their potential use as novel candidates for treatment of diabetic retinopathy.


Assuntos
Proteína Semelhante a ELAV 1/metabolismo , Células Endoteliais/metabolismo , Glucose/toxicidade , Indóis/administração & dosagem , RNA Mensageiro/metabolismo , Retina/metabolismo , Sítios de Ligação/fisiologia , Proteína Semelhante a ELAV 1/química , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Glucose/administração & dosagem , Humanos , Indóis/química , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA Mensageiro/química , Retina/efeitos dos fármacos , Retina/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA